27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “ atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Local, efflux-dependent auxin gradients as a common module for plant organ formation.

          Plants, compared to animals, exhibit an amazing adaptability and plasticity in their development. This is largely dependent on the ability of plants to form new organs, such as lateral roots, leaves, and flowers during postembryonic development. Organ primordia develop from founder cell populations into organs by coordinated cell division and differentiation. Here, we show that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips. These gradients are mediated by cellular efflux requiring asymmetrically localized PIN proteins, which represent a functionally redundant network for auxin distribution in both aerial and underground organs. PIN1 polar localization undergoes a dynamic rearrangement, which correlates with establishment of auxin gradients and primordium development. Our results suggest that PIN-dependent, local auxin gradients represent a common module for formation of all plant organs, regardless of their mature morphology or developmental origin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.

            Local accumulation of the plant growth regulator auxin mediates pattern formation in Arabidopsis roots and influences outgrowth and development of lateral root- and shoot-derived primordia. However, it has remained unclear how auxin can simultaneously regulate patterning and organ outgrowth and how its distribution is stabilized in a primordium-specific manner. Here we show that five PIN genes collectively control auxin distribution to regulate cell division and cell expansion in the primary root. Furthermore, the joint action of these genes has an important role in pattern formation by focusing the auxin maximum and restricting the expression domain of PLETHORA (PLT) genes, major determinants for root stem cell specification. In turn, PLT genes are required for PIN gene transcription to stabilize the auxin maximum at the distal root tip. Our data reveal an interaction network of auxin transport facilitators and root fate determinants that control patterning and growth of the root primordium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Indole-3-acetic acid in microbial and microorganism-plant signaling.

              Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                09 February 2017
                2017
                : 8
                : 102
                Affiliations
                [1] 1Bio-Protection Research Centre, Lincoln University Lincoln, New Zealand
                [2] 2Institute for Scientific and Technological Research of San Luis Potosi San Luis Potosí, Mexico
                [3] 3Department of Phytopathology, Federal University of Lavras Lavras, Brazil
                [4] 4School of Plant Sciences, University of Arizona Tucson, AZ, USA
                [5] 5Scion Rotorua, New Zealand
                Author notes

                Edited by: Essaid Ait Barka, University of Reims Champagne-Ardenne, France

                Reviewed by: Masoomeh Shams-Ghahfarokhi, Tarbiat Modares University, Iran; Rachid Lahlali, Ecole Nationale d'Agriculture de Meknès, Morocco

                *Correspondence: Artemio Mendoza-Mendoza artemio.mendoza@ 123456lincoln.ac.nz

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

                †Present Address: Mark Braithwaite, Plant Diagnostics Limited, Templeton, Christchurch, New Zealand

                In Memoriam: This paper is dedicated to the memory of the late Annabel Clouston.

                Article
                10.3389/fpls.2017.00102
                5299017
                28232840
                64ad385c-f49e-49c7-a907-14a71445e6a2
                Copyright © 2017 Nieto-Jacobo, Steyaert, Salazar-Badillo, Nguyen, Rostás, Braithwaite, De Souza, Jimenez-Bremont, Ohkura, Stewart and Mendoza-Mendoza.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 November 2016
                : 18 January 2017
                Page count
                Figures: 7, Tables: 4, Equations: 0, References: 101, Pages: 18, Words: 11913
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                trichoderma,auxins,3-indole-acetic acid,plant growth promotion,volatile organic compounds,6-pp

                Comments

                Comment on this article