10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A circular RNA from APC inhibits the proliferation of diffuse large B-cell lymphoma by inactivating Wnt/β-catenin signaling via interacting with TET1 and miR-888

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circular RNA (circRNA), a type of non-coding RNA, can promote or suppress tumorigenesis. To investigate the involvement of circRNA in diffuse large B-cell lymphoma (DLBCL), we performed a circRNA microarray analysis on paired DLBCL and normal tissues. We identified a novel and highly stable circRNA originating from the back-splicing of APC exon 7 to exon 14, circ-APC (hsa_circ_0127621), which was downregulated in DLBCL tissues, cell lines and plasma. In gain-of-function experiments, ectopic expression of circ-APC inhibited DLBCL cell proliferation in vitro and tumor growth in vivo. Cytoplasmic circ-APC functioned as a sponge for miR-888, thus post-transcriptionally upregulating APC by alleviating the repressive effects of miR-888 on this gene. Further, nuclear circ-APC bound to the APC promoter and recruited the DNA demethylase TET1, thereby transcriptionally upregulating APC. Upon its upregulation, APC dampened the canonical Wnt/β-catenin signaling pathway by reducing the accumulation of β-catenin in the nucleus, thereby retarding DLBCL growth. Clinically, circ-APC was found to be an effective diagnostic and prognostic biomarker for patients with DLBCL. Our study suggests that circ-APC is a novel proliferation inhibitor, and that restoring circ-APC expression may be a promising therapeutic approach for DLBCL patients.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7

          Mounting evidences indicate that circular RNAs (circRNAs) have a vital role in human diseases, especially cancers. More recently, circHIPK3, a particularly abundant circRNA, was proposed to be involved in tumorigenesis. However, its role in colorectal cancer (CRC) has not been explored. In this study, we found circHIPK3 was significantly upregulated in CRC tissues and cell lines, at least in part, due to c-Myb overexpression and positively correlated with metastasis and advanced clinical stage. Moreover, Cox multivariate survival analysis showed that high-level expression of circHIPK3 was an independent prognostic factor of poor overall survival (OS) in CRC (hazard ratio [HR] = 2.75, 95% confidence interval [CI] 1.74–6.51, p = 0.009). Functionally, knockdown of circHIPK3 markedly inhibited CRC cells proliferation, migration, invasion, and induced apoptosis in vitro and suppressed CRC growth and metastasis in vivo. Mechanistically, by using biotinylated-circHIPK3 probe to perform RNA pull-down assay in CRC cells, we identified miR-7 was the only one microRNA that was abundantly pulled down by circHIPK3 in both HCT116 and HT29 cells and these interactions were also confirmed by biotinylated miR-7 pull-down and dual-luciferase reporter assays. Overexpression of miR-7 mimicked the effect of circHIPK3 knockdown on CRC cells proliferation, migration, invasion, and apoptosis. Furthermore, ectopic expression of circHIPK3 effectively reversed miR-7-induced attenuation of malignant phenotypes of CRC cells by increasing the expression levels of miR-7 targeting proto-oncogenes (FAK, IGF1R, EGFR, YY1). Remarkably, the combination of circHIPK3 silencing and miR-7 overexpression gave a better effect on tumor suppression both in vitro and in vivo than did circHIPK3 knockdown or miR-7 overexpression alone. Taken together, our data indicate that circHIPK3 may have considerable potential as a prognostic biomarker in CRC, and support the notion that therapeutic targeting of the c-Myb/circHIPK3/miR-7 axis may be a promising treatment approach for CRC patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt/beta-catenin signaling in cancer stemness and malignant behavior.

            Stem cells are defined by their intrinsic capacity to self-renew and differentiate. Cancer stem cells retain both these features but have lost homeostatic mechanisms which maintain normal cell numbers. The canonical Wnt/beta-catenin signaling pathway plays a central role in modulating the delicate balance between stemness and differentiation in several adult stem cell niches such as the hair follicles in the skin, the mammary gland, and the intestinal crypt. Accordingly, constitutive Wnt signaling activation, resulting from mutations in genes encoding its downstream components, underlies tumorigenesis in these tissues. In the majority of sporadic colorectal cancer cases, the rate-limiting event is either loss of APC function or oncogenic beta-catenin mutations. However, although the presence of these initiating mutations would predict nuclear beta-catenin accumulation throughout the tumor mass, heterogeneous intracellular distributions of this key Wnt signaling molecule are observed within primary tumors and their metastases. In particular, tumor cells located at the invasive front and those migrating into the adjacent stromal tissues show nuclear beta-catenin staining. Hence, different levels of Wnt signaling activity reflect tumor heterogeneity and are likely to account for distinct cellular activities such as proliferation and epithelial-mesenchymal transitions, which prompt tumor growth and malignant behavior, respectively. Several intrinsic (cell-autonomous and/or autocrine) and extrinsic (paracrine, derived from the tumor microenvironment) factors may explain this heterogeneity of Wnt/beta-catenin signaling activity within the tumor mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A 360° view of circular RNAs: From biogenesis to functions.

              The first circular RNA (circRNA) was identified more than 40 years ago, but it was only recently appreciated that circRNAs are common outputs of many eukaryotic protein-coding genes. Some circRNAs accumulate to higher levels than their associated linear mRNAs, especially in the nervous system, and have clear regulatory functions that result in organismal phenotypes. The pre-mRNA splicing machinery generates circRNAs via backsplicing reactions, which are often facilitated by intronic repeat sequences that base pair to one another and bring the intervening splice sites into close proximity. When spliceosomal components are limiting, circRNAs can become the preferred gene output, and backsplicing reactions are further controlled by exon skipping events and the combinatorial action of RNA binding proteins. This allows circRNAs to be expressed in a tissue- and stage-specific manner. Once generated, circRNAs are highly stable transcripts that often accumulate in the cytoplasm. The functions of most circRNAs remain unknown, but some can regulate the activities of microRNAs or be translated to produce proteins. Circular RNAs can further interface with the immune system as well as control gene expression events in the nucleus, including alternative splicing decisions. Circular RNAs thus represent a large class of RNA molecules that are tightly regulated, and it is becoming increasingly clear that they likely impact many biological processes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 October 2019
                13 October 2019
                : 11
                : 19
                : 8068-8084
                Affiliations
                [1 ]Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
                [2 ]Endoscopic Center, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
                Author notes
                Correspondence to: Jie Ma; email: majiefzbl@126.com
                Correspondence to: Yongjun Guo; email: yongjunguo@hotmail.com
                Article
                102122 102122
                10.18632/aging.102122
                6814595
                31631067
                64947c44-aab1-4c74-9c71-b8bbcfe776db
                Copyright © 2019 Hu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 05 May 2019
                : 21 July 2019
                Categories
                Research Paper

                Cell biology
                circular rna,diffuse large b-cell lymphoma,circ-apc,biomarker
                Cell biology
                circular rna, diffuse large b-cell lymphoma, circ-apc, biomarker

                Comments

                Comment on this article