19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of a microtitre plate-based assay for lipid-linked glycosyltransferase products using the mycobacterial cell wall rhamnosyltransferase WbbL.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Mycobacterium tuberculosis a rhamnosyltransferase (WbbL) catalyses the transfer of an alpha-L-Rhap residue from dTDP-L-rhamnose (dTDP-Rha) to decaprenyldiphosphoryl-alpha-D-N-acetylglucosamine (GlcNAc-P-P-DP) to form alpha-L-Rhap-(1-->3)-alpha-D-GlcNAc-P-P-DP, which is then further elongated with Galf and Araf units, and finally mycolylated and attached to the peptidoglycan. This enzyme is essential for M. tuberculosis viability and at the same time absent in eukaryotic cells, and is therefore a good target for the development of new antituberculosis therapeutics. Here, we report a microtitre plate-based method for the assay of this enzyme using a crude membrane preparation from an Escherichia coli strain overexpressing wbbL as an enzyme source and the natural acceptor substrate GlcNAc-P-P-DP. Initial characterization of the enzyme included unequivocal identification of the product Rha-GlcNAc-P-P-DP by liquid chromatography (LC)-MS, and the facts that WbbL shows an absolute requirement for divalent cations and that its activity is stimulated by beta-mercaptoethanol. Its pH optimum and basic kinetic parameters were also determined, and the kinetic analysis showed that WbbL uses a ternary complex mechanism. The microtitre plate-based assay for this enzyme was developed by taking advantage of the lipophilic nature of the product. This assay should be readily transferable to other glycosyltransferases which use lipid-based acceptors and aid greatly in obtaining inhibitors of such glycosyltransferases for new drug development.

          Related collections

          Author and article information

          Journal
          Microbiology (Reading, Engl.)
          Microbiology (Reading, England)
          Microbiology Society
          1350-0872
          1350-0872
          Dec 2008
          : 154
          : Pt 12
          Affiliations
          [1 ] Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA.
          Article
          154/12/3724 NIHMS78177
          10.1099/mic.0.2008/023366-0
          2717732
          19047740
          644c0ff1-be1b-4311-8e41-63f75f1da2c2
          History

          Comments

          Comment on this article