3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of different biodegradable scaffolds in tissue engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to compare the characteristics of acellular dermal matrix (ADM), small intestinal submucosa (SIS) and Bio-Gide scaffolds with acellular vascular matrix (ACVM)-0.25% human-like collagen I (HLC-I) scaffold in tissue engineering blood vessels. The ACVM-0.25% HLC-I scaffold was prepared and compared with ADM, SIS and Bio-Gide scaffolds via hematoxylin and eosin (H&E) staining, Masson staining and scanning electron microscope (SEM) observations. Primary human gingival fibroblasts (HGFs) were cultured and identified. Then, the experiment was established via the seeding of HGFs on different scaffolds for 1, 4 and 7 days. The compatibility of four different scaffolds with HGFs was evaluated by H&E staining, SEM observation and Cell Counting Kit-8 assay. Then, a series of experiments were conducted to evaluate water absorption capacities, mechanical abilities, the ultra-microstructure and the cytotoxicity of the four scaffolds. The ACVM-0.25% HLC-I scaffold was revealed to exhibit the best cell proliferation and good cell architecture. ADM and Bio-Gide scaffolds exhibited good mechanical stability but cell proliferation was reduced when compared with the ACVM-0.25% HLC-I scaffold. In addition, SIS scaffolds exhibited the worst cell proliferation. The ACVM-0.25% HLC-I scaffold exhibited the best water absorption, followed by the SIS and Bio-Gide scaffolds, and then the ADM scaffold. In conclusion, the ACVM-0.25% HLC-I scaffold has good mechanical properties as a tissue engineering scaffold and the present results suggest that it has better biological characterization when compared with other scaffold types.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold.

          Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) are a new type of MSCs that come with attractive merits over the iPSCs per se. Aimed for regenerating bone tissues, this study was designed to investigate osteogenic differentiation and bone regeneration capacities of iPSC-MSCs by using biomimetic nanofibers of hydroxyapatite/collagen/chitosan (HAp/Col/CTS). Murine iPSCs were firstly induced to differentiate into iPSC-MSCs and thoroughly characterized. Effects of HAp/Col/CTS nanofibers prepared from electrospinning of Col-doped HAp/CTS nanocomposite, on osteogenic differentiation of the generated iPSC-MSCs were then evaluated in detail, including cell morphology, proliferation, migration, quantified specific osteogenic gene and protein expressions. Compared with different controls (TCP, CTS, and HAp/CTS), the HAp/Col/CTS scaffold was found to have more favorable effects on attachment and proliferation of iPSC-MSCs than others (P<0.01). Expressions of osteogenic genes, Runx2, Ocn, Alp, and Col, were significantly upregulated in iPSC-MSCs cultured on HAp/Col/CTS than CTS (P<0.01). Similarly, there appeared considerably higher secreting activities of osteogenesis protein markers, ALP and Col. Furthermore, mouse cranial defects were created to investigate efficacy of using iPSC-MSCs in combination with HAp/Col/CTS scaffold for regenerative bone repair in vivo. Examinations by computed tomography (CT) imaging, bone mineral density and hematoxylin eosin (HE) staining corroborated that cell-scaffold construct of iPSC-MSCs+HAp/Col/CTS could effectively promote bone regeneration. After 6 weeks of implantation, bone mineral density of the iPSC-MSCs+HAp/Col/CTS group was found to be nearly 2-fold higher than others. Our results demonstrated that biomimetic nanofibers of HAp/Col/CTS promoted the osteogenic differentiation and bone regeneration of iPSC-MSCs. The iPSC-MSCs+HAp/Col/CTS complex could be used as a new 'stem cell-scaffold' system for realizing personalized and efficacious bone regeneration in future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh.

            Polypropylene has been used as a surgical mesh material for several decades. This non-degradable synthetic polymer provides mechanical strength, a predictable host response, and its use has resulted in reduced recurrence rates for ventral hernia and pelvic organ prolapse. However, polypropylene and similar synthetic materials are associated with a chronic local tissue inflammatory response and dense fibrous tissue deposition. These outcomes have prompted variations in mesh design to minimize the surface area interface and increase integration with host tissue. In contrast, biologic scaffold materials composed of extracellular matrix (ECM) are rapidly degraded in-vivo and are associated with constructive tissue remodeling and minimal fibrosis. The objective of the present study was to assess the effects of an ECM hydrogel coating on the long-term host tissue response to polypropylene mesh in a rodent model of abdominal muscle injury. At 14 days post implantation, the ECM coated polypropylene mesh devices showed a decreased inflammatory response as characterized by the number and distribution of M1 macrophages (CD86+/CD68+) around mesh fibers when compared to the uncoated mesh devices. At 180 days the ECM coated polypropylene showed decreased density of collagen and amount of mature type I collagen deposited between mesh fibers when compared to the uncoated mesh devices. This study confirms and extends previous findings that an ECM coating mitigates the chronic inflammatory response and associated scar tissue deposition characteristic of polypropylene. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review

              Small-diameter blood vessels (SDBVs) are still a challenging task to prepare due to the occurrence of thrombosis formation, intimal hyperplasia, and aneurysmal dilation. Electrospinning technique, as a promising tissue engineering approach, can fabricate polymer fibrous scaffolds that satisfy requirements on the construction of extracellular matrix (ECM) of native blood vessel and promote the adhesion, proliferation, and growth of cells. In this review, we summarize the polymers that are deployed for the fabrication of SDBVs and classify them into three categories, synthetic polymers, natural polymers, and hybrid polymers. Furthermore, the biomechanical properties and the biological activities of the electrospun SBVs including anti-thrombogenic ability and cell response are discussed. Polymer blends seem to be a strategic way to fabricate SDBVs because it combines both suitable biomechanical properties coming from synthetic polymers and favorable sites to cell attachment coming from natural polymers.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                May 2019
                21 March 2019
                21 March 2019
                : 19
                : 5
                : 4043-4056
                Affiliations
                [1 ]Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
                [2 ]Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
                [3 ]Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, Sichuan 621000, P.R. China
                [4 ]Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University and The Key Laboratory of Stomatology, Shijiazhuang, Hebei 050000, P.R. China
                [5 ]Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
                [6 ]Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
                Author notes
                Correspondence to: Professor Xu-Qian Liu or Professor Min-Hai Nie, Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, 2 Jiang Yang Nan Road, Jiangyang, Luzhou, Sichuan 646000, P.R. China, E-mail: liuxuqianwork@ 123456163.com , E-mail: nieminhai@ 123456126.com
                [*]

                Contributed equally

                Article
                mmr-19-05-4043
                10.3892/mmr.2019.10066
                6471812
                30896809
                644624f2-ba37-4799-8b0d-b3bb96c91e32
                Copyright: © Qiu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 15 May 2018
                : 19 December 2018
                Categories
                Articles

                scaffold,acellular vascular matrix,small intestinal submucosa

                Comments

                Comment on this article