33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of Synaptic Connectivity, Particularly in Second Order Neurons Is a Key Feature of Diabetic Retinal Neuropathy in the Ins2 Akita Mouse

      research-article
      , , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinal neurodegeneration is a key component of diabetic retinopathy (DR), although the detailed neuronal damage remains ill-defined. Recent evidence suggests that in addition to amacrine and ganglion cell, diabetes may also impact on other retinal neurons. In this study, we examined retinal degenerative changes in Ins2 Akita diabetic mice. In scotopic electroretinograms (ERG), b-wave and oscillatory potentials were severely impaired in 9-month old Ins2 Akita mice. Despite no obvious pathology in fundoscopic examination, optical coherence tomography (OCT) revealed a progressive thinning of the retina from 3 months onwards. Cone but not rod photoreceptor loss was observed in 3-month-old diabetic mice. Severe impairment of synaptic connectivity at the outer plexiform layer (OPL) was detected in 9-month old Ins2 Akita mice. Specifically, photoreceptor presynaptic ribbons were reduced by 25% and postsynaptic boutons by 70%, although the density of horizontal, rod- and cone-bipolar cells remained similar to non-diabetic controls. Significant reductions in GABAergic and glycinergic amacrine cells and Brn3a + retinal ganglion cells were also observed in 9-month old Ins2 Akita mice. In conclusion, the Ins2 Akita mouse develops cone photoreceptor degeneration and the impairment of synaptic connectivity at the OPL, predominately resulting from the loss of postsynaptic terminal boutons. Our findings suggest that the Ins2 Akita mouse is a good model to study diabetic retinal neuropathy.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice.

          In this article, we report on a nonobese C57BL/6 (B6) mouse model of NIDDM named Akita mouse, characterized by early age onset and autosomal dominant mode of inheritance. At 7 weeks of age, the mean morning blood glucose levels (mmol/l) under ad libitum feeding conditions were significantly higher (P < 0.01, analysis of variance [ANOVA]) in diabetic mice than in unaffected mice: 27.3 +/- 5.3 for diabetic males (n = 50) and 9.3 +/- 1.2 for unaffected males (n = 50); 13.6 +/- 3.8 for diabetic females (n = 50) and 8.7 +/- 1.1 for unaffected females (n = 50), while corresponding immunoreactive insulin levels in plasma were significantly lower in diabetic mice than in unaffected mice. In vitro insulin secretion was also impaired, even at 4 weeks of age. The 50% survival time for male diabetic mice (305 days) was significantly shorter than that of unaffected counterpart mice but not for diabetic females. Obesity did not occur in diabetic mice. Histological examinations of the pancreas in diabetic mice, from 4 to 35 weeks of age, revealed decreases in the numbers of active beta-cells without insulitis. Morphometry demonstrated specific decreases in immunologically detectable insulin density in islets in diabetic mice, even at 4 weeks of age, without changes of relative islet areas. By linkage analysis, a single locus was identified on the basis of 178 N2 mice [(B6 x C3H/He)F1 x B6 and (B6 x C3H/He)F1 x C3H/He]. This locus, which we named Mody4, was mapped to chromosome 7 in a region 2-8 cM distal to D7Mit189 (logarithm of odds [LOD] score = 15.6 and 10.3).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Ins2Akita mouse as a model of early retinal complications in diabetes.

            This study tested the Ins2(Akita) mouse as an animal model of retinal complications in diabetes. The Ins2(Akita) mutation results in a single amino acid substitution in the insulin 2 gene that causes misfolding of the insulin protein. The mutation arose and is maintained on the C57BL/6J background. Male mice heterozygous for this mutation have progressive loss of beta-cell function, decreased pancreatic beta-cell density, and significant hyperglycemia, as early as 4 weeks of age. Heterozygous Ins2(Akita) mice were bred to C57BL/6J mice, and male offspring were monitored for hyperglycemia, beginning at 4.5 weeks of age. After 4 to 36 weeks of hyperglycemia, the retinas were analyzed for vascular permeability, vascular lesions, leukostasis, morphologic changes of micro- and macroglia, apoptosis, retinal degeneration, and insulin receptor kinase activity. The mean blood glucose of Ins2(Akita) mice was significantly elevated, whereas the body weight at death was reduced compared with that of control animals. Compared with sibling control mice, the Ins2(Akita) mice had increased retinal vascular permeability after 12 weeks of hyperglycemia (P < 0.005), a modest increase in acellular capillaries after 36 weeks of hyperglycemia (P < 0.0008), and alterations in the morphology of astrocytes and microglia, but no changes in expression of Muller cell glial fibrillary acidic protein. Increased apoptosis was identified by immunoreactivity for active caspase-3 after 4 weeks of hyperglycemia (P < 0.01). After 22 weeks of hyperglycemia, there was a 16.7% central and 27% peripheral reduction in the thickness of the inner plexiform layer, a 15.6% peripheral reduction in the thickness of the inner nuclear layer (P < 0.001), and a 23.4% reduction in the number of cell bodies in the retinal ganglion cell layer (P < 0.005). In vitro insulin receptor kinase activity was reduced (P < 0.05) after 12 weeks of hyperglycemia. The retinas of heterozygous male Ins2(Akita) mice exhibit vascular, neural, and glial abnormalities generally consistent with clinical observations and other animal models of diabetes. In light of the relatively early, spontaneous onset of the disease and the popularity of the C57BL/6J inbred strain as a background for the generation and study of other genetic alterations, combining the Ins2(Akita) mutation with other engineered mutations will be of great use for studying the molecular basis of retinal complications of diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy.

              The most striking features of diabetic retinopathy are the vascular abnormalities that are apparent by fundus examination. There is also strong evidence that diabetes causes apoptosis of neural and vascular cells in the retina. Thus, there is good reason to define diabetic retinopathy as a form of chronic neurovascular degeneration. In keeping with the gradual onset of retinopathy in humans, the rate of cell loss in the animal models is insidious, even in uncontrolled diabetes. This is not surprising given that a sustained high rate of cell loss without regeneration would soon lead to catastrophic tissue destruction. The consequences of ongoing cell death are difficult to detect, and even the quantification of cumulative cell loss requires painstaking histology and microscopy. This subtle cell loss raises the issue of the relevance of the phenomenon to the progression of diabetic retinopathy and the ultimate loss of vision. Neuronal function may be compromised in advance of apoptosis, contributing to an early deterioration of vision. Here we review some of the evidence supporting apoptotic cell death as a contributing mechanism of diabetic retinopathy, explore some of the potential causes, and discuss the potential links between apoptosis and loss of visual function in diabetic retinopathy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 May 2014
                : 9
                : 5
                : e97970
                Affiliations
                [1]Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
                Queen's University Belfast, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JRH MC HX. Performed the experiments: JRH RGP. Analyzed the data: JRH RGP. Contributed reagents/materials/analysis tools: JRH MC RGP. Wrote the paper: JRH HX.

                Article
                PONE-D-14-08117
                10.1371/journal.pone.0097970
                4029784
                24848689
                641e385b-72b3-4ac4-acf8-09d4410633ef
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 February 2014
                : 26 April 2014
                Page count
                Pages: 11
                Funding
                This work was supported by Diabetes UK (11/0004230). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Histology
                Biochemistry
                Neurochemistry
                Neurotransmitters
                Cell Biology
                Cell Processes
                Cellular Stress Responses
                Cellular Types
                Animal Cells
                Neurons
                Cellular Structures and Organelles
                Molecular Cell Biology
                Neuroscience
                Cellular Neuroscience
                Neuronal Morphology
                Sensory Systems
                Visual System
                Medicine and Health Sciences
                Endocrinology
                Diabetic Endocrinology
                Metabolic Disorders
                Diabetes Mellitus
                Type 1 Diabetes
                Ophthalmology
                Retinal Disorders
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Mouse Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article