19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Geographical location specific composition of cultured microbiota and Lactobacillus occurrence in human breast milk in China

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Composition of microbiota in human breast milk in China was highly geographical location specific and can be classified into Enterococcus, Streptococcus and Staphylococcus dominant group, respectively. The occurrence rate of Lactobacillus in Northwest and North China is high. Lactobacillus reuteri and Lactobacillus gasseri in Tibetan samples, Gansu Lintan, were the highest.

          Abstract

          Breast milk bacteria play an important role in the early development of the gut microbiota and the immune system. Dominant living bacteria of 89 healthy Chinese women from 11 cities in five regions were analysed by broad-range yeast extract, casitone, and fatty acid and de Man, Rogosa, and Sharpe-based culturing coupled with 16S rRNA sequence and quantitative polymerase chain reaction. Principal coordinate analysis showed that human breast milk samples were classified into three groups, driven by Enterococcus (abundance in group 1, 63.13%), Streptococcus (abundance in group 2, 68.16%) and Staphylococcus (abundance in group 3, 55.17%). The microbiota profile was highly region-specific. Samples from the Northwest and North of China showed higher alpha diversity compared to other regions ( p < 0.05). Staphylococcus, Streptococcus, and Enterococcus were the dominant genera in all samples. Lactobacillus had a high occurrence in samples from the Northwest and North, dominated by Lactobacillus reuteri and Lactobacillus gasseri. Samples of mothers with a high postpartum body mass index showed more Staphylococcus and less Lactobacillus and Streptococcus. Staphylococcus was negatively correlated with Lactobacillus and Streptococcus. The mode of delivery also affected the composition of microbiota, even after culture. These findings indicate differences between the North and South, provide effective information for collection of samples in which Lactobacillus is the predominant genus, and lower the detection limit for small amounts of bacteria.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Human milk is a source of lactic acid bacteria for the infant gut.

          To investigate whether human breast milk contains potentially probiotic lactic acid bacteria, and therefore, whether it can be considered a synbiotic food. Study design Lactic acid bacteria were isolated from milk, mammary areola, and breast skin of eight healthy mothers and oral swabs and feces of their respective breast-fed infants. Some isolates (178 from each mother and newborn pair) were randomly selected and submitted to randomly amplified polymorphic DNA (RAPD) polymerase chain reaction analysis, and those that displayed identical RAPD patterns were identified by 16S rDNA sequencing. Within each mother and newborn pair, some rod-shaped lactic acid bacteria isolated from mammary areola, breast milk, and infant oral swabs and feces displayed identical RAPD profiles. All of them, independently from the mother and child pair, were identified as Lactobacillus gasseri. Similarly, among coccoid lactic acid bacteria from these different sources, some shared an identical RAPD pattern and were identified as Enterococcus faecium. In contrast, none of the lactic acid bacteria isolated from breast skin shared RAPD profiles with lactic acid bacteria of the other sources. Breast-feeding can be a significant source of lactic acid bacteria to the infant gut. Lactic acid bacteria present in milk may have an endogenous origin and may not be the result of contamination from the surrounding breast skin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the effects of diet on bacterial metabolism in the large intestine.

            Recent analyses of ribosomal RNA sequence diversity have demonstrated the extent of bacterial diversity in the human colon, and have provided new tools for monitoring changes in the composition of the gut microbial community. There is now an excellent opportunity to correlate ecological niches and metabolic activities with particular phylogenetic groups among the microbiota of the human gut. Bacteria that associate closely with particulate material and surfaces in the gut include specialized primary degraders of insoluble substrates, including resistant starch, plant structural polysaccharides and mucin. Butyrate-producing bacteria found in human faeces belong mainly to the clostridial clusters IV and XIVa. In vitro and in vivo evidence indicates that a group related to Roseburia and Eubacterium rectale plays a major role in mediating the butyrogenic effect of fermentable dietary carbohydrates. Additional cluster XIVa species can convert lactate to butyrate, while some members of the clostridial cluster IX convert lactate to propionate. The metabolic outputs of the gut microbial community depend not only on available substrate, but also on the gut environment, with pH playing a major role. Better understanding of the colonic microbial ecosystem will help to explain and predict the effects of dietary additives, including nondigestible carbohydrates, probiotics and prebiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiota of human breast tissue.

              In recent years, a greater appreciation for the microbes inhabiting human body sites has emerged. In the female mammary gland, milk has been shown to contain bacterial species, ostensibly reaching the ducts from the skin. We decided to investigate whether there is a microbiome within the mammary tissue. Using 16S rRNA sequencing and culture, we analyzed breast tissue from 81 women with and without cancer in Canada and Ireland. A diverse population of bacteria was detected within tissue collected from sites all around the breast in women aged 18 to 90, not all of whom had a history of lactation. The principal phylum was Proteobacteria. The most abundant taxa in the Canadian samples were Bacillus (11.4%), Acinetobacter (10.0%), Enterobacteriaceae (8.3%), Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium (5.8%), Comamonadaceae (5.7%), Gammaproteobacteria (5.0%), and Prevotella (5.0%). In the Irish samples the most abundant taxa were Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria welshimeri (12.1%), Propionibacterium (10.1%), and Pseudomonas (5.3%). None of the subjects had signs or symptoms of infection, but the presence of viable bacteria was confirmed in some samples by culture. The extent to which these organisms play a role in health or disease remains to be determined.
                Bookmark

                Author and article information

                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                February 20 2019
                2019
                : 10
                : 2
                : 554-564
                Affiliations
                [1 ]State Key Laboratory of Food Science and Technology
                [2 ]Jiangnan University
                [3 ]Wuxi
                [4 ]China
                [5 ]School of Food Science and Technology
                [6 ]Institute of Nutrition and Health
                [7 ]National Institute for Nutrition and Health
                [8 ]Chinese Center For Disease Control And Prevention
                [9 ]Beijing
                Article
                10.1039/C8FO02182A
                30681124
                64003bdc-12c7-4fb1-b63e-b6888776eb56
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article