10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy

      , , , , , ,
      Fuel
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Lignin valorization: improving lignin processing in the biorefinery.

          Research and development activities directed toward commercial production of cellulosic ethanol have created the opportunity to dramatically increase the transformation of lignin to value-added products. Here, we highlight recent advances in this lignin valorization effort. Discovery of genetic variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways have produced lignin feedstocks with favorable properties for recovery and downstream conversion. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biomass pretreatment: fundamentals toward application.

            Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but the biomass must be subjected to pretreatment processes to liberate the sugars needed for fermentation. Production of value-added co-products along-side biofuels through integrated biorefinery processes creates the need for selectivity during pretreatment. This paper presents a survey of biomass pretreatment technologies with emphasis on concepts, mechanism of action and practicability. The advantages and disadvantages, and the potential for industrial applications of different pretreatment technologies are the highlights of this paper. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feedstocks for lignocellulosic biofuels.

              In 2008, the world produced approximately 87 gigaliters of liquid biofuels, which is roughly equal to the volume of liquid fuel consumed by Germany that year. Essentially, all of this biofuel was produced from crops developed for food production, raising concerns about the net energy and greenhouse gas effects and potential competition between use of land for production of fuels, food, animal feed, fiber, and ecosystem services. The pending implementation of improved technologies to more effectively convert the nonedible parts of plants (lignocellulose) to liquid fuels opens diverse options to use biofuel feedstocks that reach beyond current crops and the land currently used for food and feed. However, there has been relatively little discussion of what types of plants may be useful as bioenergy crops.
                Bookmark

                Author and article information

                Journal
                Fuel
                Fuel
                Elsevier BV
                00162361
                October 2021
                October 2021
                : 302
                : 121086
                Article
                10.1016/j.fuel.2021.121086
                63e42c88-6627-40bd-87ed-14cf16c3afec
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article