Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Broiler chickens are highly sensitive to high ambient temperatures due to their feathers, lack of skin sweat glands, and high productivity. Heat stress (HS) is a major concern for the poultry industry because it negatively affects growth as well as immune functions, which increase the potential risk of infectious disease outbreaks. Therefore, it is vital to elucidate HS's effect on the avian immune system, especially considering the global rise in average surface temperature. Our study identified a series of immunological disorders in heat-stressed broiler chickens. We exposed 22-day-old broiler chickens to a continuous HS condition (34.5 ± 0.5°C) for 14 days and immunized them with a prototype bovine serum albumin (BSA) antigen. The plasma and lymphoid tissues (thymus, bursa of Fabricius, and spleen) were harvested at the end of the experiments to investigate the induction of BSA-specific immune responses. Our results revealed that plasma titers of immunoglobulin (Ig)Y, IgM, and IgA antibodies specific for BSA were lower than those of thermoneutral chickens immunized with BSA. Furthermore, the spleens of the heat-stressed broiler chickens displayed severe depression of Bu1 + B cells and CD3 + T cells, including CD4 + T cells and CD8 + T cells, and lacked a fully developed germinal center (GC), which is crucial for B cell proliferation. These immunological abnormalities might be associated with severe depression of CD4 CD8 or CD4 +CD8 + cells, which are precursors of either helper or killer T cells in the thymus and Bu1 + B cells in the bursa of Fabricius. Importantly, HS severely damaged the morphology of the thymic cortex and bursal follicles, where functional maturation of T and B cells occur. These results indicate that HS causes multiple immune abnormalities in broiler chickens by impairing the developmental process and functional maturation of T and B cells in both primary and secondary lymphoid tissues.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found

          Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells

          Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using stable isotope-resolved metabolomics. Using [U-(13)C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-(13)C,(15)N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their (13)C-labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency makes them susceptible to the glutaminase inhibitor BPTES and hence could be targeted for cancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells.

            B cell activation leads to proliferation and Ab production that can protect from pathogens or promote autoimmunity. Regulation of cell metabolism is essential to support the demands of lymphocyte growth and effector function and may regulate tolerance. In this study, we tested the regulation and role of glucose uptake and metabolism in the proliferation and Ab production of control, anergic, and autoimmune-prone B cells. Control B cells had a balanced increase in lactate production and oxygen consumption following activation, with proportionally increased glucose transporter Glut1 expression and mitochondrial mass upon either LPS or BCR stimulation. This contrasted with metabolic reprogramming of T cells, which had lower glycolytic flux when resting but disproportionately increased this pathway upon activation. Importantly, tolerance greatly affected B cell metabolic reprogramming. Anergic B cells remained metabolically quiescent, with only a modest increase in glycolysis and oxygen consumption with LPS stimulation. B cells chronically stimulated with elevated BAFF, however, rapidly increased glycolysis and Ab production upon stimulation. Induction of glycolysis was critical for Ab production, as glycolytic inhibition with the pyruvate dehydrogenase kinase inhibitor dichloroacetate sharply suppressed B cell proliferation and Ab secretion in vitro and in vivo. Furthermore, B cell-specific deletion of Glut1 led to reduced B cell numbers and impaired Ab production in vivo. Together, these data show that activated B cells require Glut1-dependent metabolic reprogramming to support proliferation and Ab production that is distinct from T cells and that this glycolytic reprogramming is regulated in tolerance.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens.

              Studies on environmental consequences of stress on animal production have grown substantially in the last few years for economic and animal welfare reasons. Physiological, hormonal, and immunological deficits as well as increases in animals' susceptibility to diseases have been reported after different stressors in broiler chickens. The aim of the current experiment is to describe the effects of 2 different heat stressors (31 +/- 1 and 36 +/- 1 degrees C/10 h per d) applied to broiler chickens from d 35 to 42 of life on the corticosterone serum levels, performance parameters, intestinal histology, and peritoneal macrophage activity, correlating and discussing the obtained data under a neuroimmune perspective. In our study, we demonstrated that heat stress (31 +/- 1 and 36 +/- 1 degrees C) increased the corticosterone serum levels and decreased BW gain and food intake. Only chickens submitted to 36 +/- 1 degrees C, however, presented a decrease in feed conversion and increased mortality. We also showed a decrease of bursa of Fabricius (31 +/- 1 and 36 +/- 1 degrees C), thymus (36 +/- 1 degrees C), and spleen (36 +/- 1 degrees C) relative weights and of macrophage basal (31 +/- 1 and 36 +/- 1 degrees C) and Staphylococcus aureus-induced oxidative burst (31 +/- 1 degrees C). Finally, mild multifocal acute enteritis characterized by an increased presence of lymphocytes and plasmocytes within the jejunum's lamina propria was also observed. The stress-induced hypothalamic-pituitary-adrenal axis activation was taken as responsible for the negative effects observed on the chickens' performance and immune function and also the changes of the intestinal mucosa. The present obtained data corroborate with others in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                07 February 2020
                2020
                : 7
                : 46
                Affiliations
                [1] 1Laboratory of Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
                [2] 2International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
                [3] 3Laboratory of Animal Nutrition, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Japan
                [4] 4Laboratory of Functional Morphology, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
                [5] 5International Research and Development Center for Mucosal Vaccine, Institute of Medical Science, The University of Tokyo , Tokyo, Japan
                Author notes

                Edited by: Robert Paul Rhoads, Virginia Tech, United States

                Reviewed by: Sonja Härtle, Ludwig Maximilian University of Munich, Germany; Irit Davidson, Kimron Veterinary Institute, Israel; Kenneth James Genovese, United States Department of Agriculture, United States

                *Correspondence: Tomonori Nochi nochi@ 123456tohoku.ac.jp

                This article was submitted to Veterinary Infectious Diseases, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2020.00046
                7020782
                32118068
                63b3d473-0e3e-471d-9af4-56d2863ce640
                Copyright © 2020 Hirakawa, Nurjanah, Furukawa, Murai, Kikusato, Nochi and Toyomizu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 June 2019
                : 17 January 2020
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 54, Pages: 13, Words: 8094
                Funding
                Funded by: Japan Society for the Promotion of Science 10.13039/501100001691
                Award ID: 15H04582
                Award ID: 16H06205
                Award ID: 18H03969
                Categories
                Veterinary Science
                Original Research

                heat stress,broiler chickens,immunity,bursa of fabricius,thymus,spleen

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content164

                Cited by56

                Most referenced authors722