40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of early detection and treatment in malaria elimination

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Falciparum malaria persists in hard-to-reach areas or demographic groups that are missed by conventional healthcare systems but could be reached by trained community members in a malaria post (MP). The main focus of a MP is to provide uninterrupted and rapid access to rapid diagnostic tests (RDTs) and artemisinin-based combination therapy (ACT) too all inhabitants of a village. RDTs allow trained community members to perform malaria diagnosis accurately and prescribe appropriate treatment, reducing as much as possible any delay between the onset of fever and treatment. Early treatment with ACT and with a low-dose of primaquine prevents further transmission from human to mosquito. A functioning MP represents an essential component of any malaria elimination strategy. Implementing large-scale, high-coverage, community-based early diagnosis and treatment through MPs requires few technological innovations but relies on a very well structured organization able to train, supervise and supply MPs, to monitor activity and to perform strict malaria surveillance.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12936-016-1399-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination.

          Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Determinants of relapse periodicity in Plasmodium vivax malaria

            Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important implications for the assessment of radical treatment efficacy and for malaria control and elimination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.

              The borders of Thailand harbour the world's most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6.3 (95% CI 2.9-13.8, p<0.001) after mefloquine monotherapy and 5.4 (2.0-14.6, p=0.001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with mefloquine. Increase in pfmdr1 copy number predicts failure even after chemotherapy with the highly effective combination of mefloquine and 3 days' artesunate. Monitoring of pfmdr1 copy number will be useful in epidemiological surveys of drug resistance in P falciparum, and potentially for predicting treatment failure in individual patients.
                Bookmark

                Author and article information

                Contributors
                jordi.landier@gmail.com , jordi@shoklo-unit.com
                daniel@shoklo-unit.com
                aungmyintthu@shoklo-unit.com
                verena@shoklo-unit.com
                drkhin_mg_lwin@shoklo-unit.com
                c.a.bonnington@gmail.com
                sasithon.puk@mahidol.ac.th
                gilles@shoklo-unit.com
                francois@tropmedres.ac
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                15 July 2016
                15 July 2016
                2016
                : 15
                : 363
                Affiliations
                [ ]Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
                [ ]Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
                [ ]Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
                Author information
                http://orcid.org/0000-0001-8619-9775
                Article
                1399
                10.1186/s12936-016-1399-y
                4946177
                27421656
                63838b68-998b-4b3d-a438-a14a048d2511
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 March 2016
                : 17 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Funded by: FundRef http://dx.doi.org/10.13039/100004417, Global Fund to Fight AIDS, Tuberculosis and Malaria;
                Categories
                Review
                Custom metadata
                © The Author(s) 2016

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article