Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Neuro-Immune-Endocrine Facet in Infectious Disease Pathophysiology

      Submit here by July 1, 2025

      About Neuroimmunomodulation: 2.2 Impact Factor I 3.6 CiteScore I 0.6 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      The Exacerbation of Hippocampal Excitotoxicity by Glucocorticoids Is Not Mediated by Apoptosis

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both endogenous and exogenous glucocorticoids (GCs) are known to cause apoptosis in a number of peripheral tissues and in some cases in the CNS. Additionally, GCs can exacerbate the neuron loss associated with such acute neurological insults as hypoxia-ischemia, excitotoxicity, and metabolic disruption. This exacerbation is accompanied by increased accumulation of glutamate in the synapse, excessive cytosolic calcium, and increased oxygen radical activity, markers usually attributed to pathways of necrotic cell death. It is also known that acute insults can involve apoptotic mediators. In this context, one outstanding question that has received little attention is whether the exacerbation of insult-mediated cell death in neurons is apoptotic in mechanism. In this study we investigate whether the GC-mediated exacerbation of hippocampal excitotoxicity in culture involves apoptosis. Specifically, we show that while the magnitude of hippocampal neuron death caused by the excitotoxin kainic acid is indeed worsened in the presence of GCs, there is no evidence of increased markers of apoptosis. Specifically, we show that neither kainic acid nor GCs alone, or in combination, cause activation of caspase 3, a critical executor of insult-induced apoptosis. Furthermore, while kainic acid causes a significant incidence of apoptotic nuclear condensation, the incidence of this morphological indicator of apoptosis is not worsened by GCs. Thus, GCs appear to augment excitotoxic death in hippocampal neurons without augmenting the occurrence of apoptosis. We suggest that this finding is to be expected, given some energetic features of GC action and the energetic demands of apoptosis.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function.

            During ischemic brain injury, glutamate accumulation leads to overstimulation of postsynaptic glutamate receptors with intracellular Ca2+ overload and neuronal cell death. Here we show that glutamate can induce either early necrosis or delayed apoptosis in cultures of cerebellar granule cells. During and shortly after exposure to glutamate, a subpopulation of neurons died by necrosis. In these cells, mitochondrial membrane potential collapsed, nuclei swelled, and intracellular debris were scattered in the incubation medium. Neurons surviving the early necrotic phase recovered mitochondrial potential and energy levels. Later, they underwent apoptosis, as shown by the formation of apoptotic nuclei and by chromatin degradation into high and low molecular weight fragments. These results suggest that mitochondrial function is a critical factor that determines the mode of neuronal death in excitotoxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons.

              The hippocampus is vulnerable to the damaging actions of insults such as transient ischemia and repetitive stimulation, as well as repeated exposure to exogenous glucocorticoids. This study investigated effects of a repeated psychological stressor, restraint, on the CA3 pyramidal neurons which are vulnerable to damage by repetitive stimulation. Repeated daily restraint stress for 21 days caused apical dendrites of CA3 pyramidal neurons to atrophy, while basal CA3 dendrites did not change. Rats undergoing this treatment were healthy and showed some adaptation of the glucocorticoid stress response over 21 days; however, stress reduced body weight gain by 14% and increased adrenal weight relative to body weight by 20%. Results are discussed in relation to the possible role of adrenal steroids and excitatory amino acids.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2003
                January 2003
                10 March 2003
                : 77
                : 1
                : 24-31
                Affiliations
                Department of Biological Sciences, Stanford University, Stanford, Calif., USA
                Article
                68337 Neuroendocrinology 2003;77:24–31
                10.1159/000068337
                12624538
                6382497e-9ab5-464a-b78b-4fe288674d1a
                © 2003 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 24 June 2002
                : 19 November 2002
                Page count
                Figures: 3, References: 70, Pages: 8
                Categories
                Regulation of Adrenocorticotropin and Brain Actions of Corticoids

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Apoptosis,Free radicals,Excitatory amino acids,Hippocampus,Kainic acid,Calcium,Adrenal steroids,Caspase,Excitotoxicity

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content316

                Cited by8

                Most referenced authors400