6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone/cartilage interfacial tissue engineering needs to satisfy the differential properties and architectures of the osteochondral region. Therefore, biphasic or multiphasic scaffolds that aim to mimic the gradient hierarchy are widely used. Here, we find that two differently structured (topographically) three-dimensional scaffolds, namely, “dense” and “nanofibrous” surfaces, show differential stimulation in osteo- and chondro-responses of cells. While the nanofibrous scaffolds accelerate the osteogenesis of mesenchymal stem cells, the dense scaffolds are better in preserving the phenotypes of chondrocytes. Two types of porous scaffolds, generated by a salt-leaching method combined with a phase-separation process using the poly(lactic acid) composition, had a similar level of porosity (~90%) and pore size (~150 μm). The major difference in the surface nanostructure led to substantial changes in the surface area and water hydrophilicity (nanofibrous ≫ dense); as a result, the nanofibrous scaffolds increased the cell-to-matrix adhesion of mesenchymal stem cells significantly while decreasing the cell-to-cell contracts. Importantly, the chondrocytes, when cultured on nanofibrous scaffolds, were prone to lose their phenotype, including reduced chondrogenic expressions (SOX-9, collagen type II, and Aggrecan) and glycosaminoglycan content, which was ascribed to the enhanced cell–matrix adhesion with reduced cell–cell contacts. On the contrary, the osteogenesis of mesenchymal stem cells was significantly accelerated by the improved cell-to-matrix adhesion, as evidenced in the enhanced osteogenic expressions (RUNX2, bone sialoprotein, and osteopontin) and cellular mineralization. Based on these findings, we consider that the dense scaffold is preferentially used for the chondral-part, whereas the nanofibrous structure is suitable for osteo-part, to provide an optimal biphasic matrix environment for osteochondral tissue engineering.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Structure and function of aggrecan.

          Aggrecan is the major proteoglycan in the articular cartilage. This molecule is important in the proper functioning of articular cartilage because it provides a hydrated gel structure (via its interaction with hyaluronan and link protein) that endows the cartilage with load-bearing properties. It is also crucial in chondroskeletal morphogenesis during development. Aggrecan is a multimodular molecule expressed by chondrocytes. Its core protein is composed of three globular domains (G1, G2, and G3) and a large extended region (CS) between G2 and G3 for glycosaminoglycan chain attachment. G1 comprises the amino terminus of the core protein. This domain has the same structural motif as link protein. Functionally, the G1 domain interacts with hyaluronan acid and link protein, forming stable ternary complexes in the extracellular matrix. G2 is homologous to the tandem repeats of G1 and of link protein and is involved in product processing. G3 makes up the carboxyl terminus of the core protein. It enhances glycosaminoglycan modification and product secretion. Aggrecan plays an important role in mediating chondrocyte-chondrocyte and chondrocyte-matrix interactions through its ability to bind hyaluronan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review: tissue engineering for regeneration of articular cartilage.

            Joint pain due to cartilage degeneration is a serious problem, affecting people of all ages. Although many techniques, often surgical, are currently employed to treat this affliction, none have had complete success. Recent advances in biology and materials science have pushed tissue engineering to the forefront of new cartilage repair techniques. This review seeks to condense information for the biomaterialist interested in developing materials for this application. Articular cartilage anatomy, types of injury, and current repair methods are explained. The need for biomaterials, current commonly used materials for tissue-engineered cartilage, and considerations in scale-up of cell-biomaterial constructs are summarized.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.

              Recent studies suggest that bone marrow stromal cells are a potential source of osteoblasts and chondrocytes and can be used to regenerate damaged tissues using a tissue-engineering (TE) approach. However, these strategies require the use of an appropriate scaffold architecture that can support the formation de novo of either bone and cartilage tissue, or both, as in the case of osteochondral defects. The later has been attracting a great deal of attention since it is considered a difficult goal to achieve. This work consisted on developing novel hydroxyapatite/chitosan (HA/CS) bilayered scaffold by combining a sintering and a freeze-drying technique, and aims to show the potential of such type of scaffolds for being used in TE of osteochondral defects. The developed HA/CS bilayered scaffolds were characterized by Fourier transform infra-red spectroscopy, X-ray diffraction analysis, micro-computed tomography, and scanning electron microscopy (SEM). Additionally, the mechanical properties of HA/CS bilayered scaffolds were assessed under compression. In vitro tests were also carried out, in order to study the water-uptake and weight loss profile of the HA/CS bilayered scaffolds. This was done by means of soaking the scaffolds into a phosphate buffered saline for 1 up to 30 days. The intrinsic cytotoxicity of the HA scaffolds and HA/CS bilayered scaffolds extract fluids was investigated by carrying out a cellular viability assay (MTS test) using Mouse fibroblastic-like cells. Results have shown that materials do not exert any cytotoxic effect. Complementarily, in vitro (phase I) cell culture studies were carried out to evaluate the capacity of HA and CS layers to separately, support the growth and differentiation of goat marrow stromal cells (GBMCs) into osteoblasts and chondrocytes, respectively. Cell adhesion and morphology were analysed by SEM while the cell viability and proliferation were assessed by MTS test and DNA quantification. The chondrogenic differentiation of GBMCs was evaluated measuring the glucosaminoglycans synthesis. Data showed that GBMCs were able to adhere, proliferate and osteogenic differentiation was evaluated by alkaline phosphatase activity and immunocytochemistry assays after 14 days in osteogenic medium and into chondrocytes after 21 days in culture with chondrogenic medium. The obtained results concerning the physicochemical and biological properties of the developed HA/CS bilayered scaffolds, show that these constructs exhibit great potential for their use in TE strategies leading to the formation of adequate tissue substitutes for the regeneration of osteochondral defects.
                Bookmark

                Author and article information

                Journal
                J Tissue Eng
                J Tissue Eng
                TEJ
                sptej
                Journal of Tissue Engineering
                SAGE Publications (Sage UK: London, England )
                2041-7314
                31 January 2019
                Jan-Dec 2019
                : 10
                : 2041731419826433
                Affiliations
                [1 ]Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
                [2 ]Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
                [3 ]Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
                [4 ]UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
                [5 ]Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
                Author notes
                [*]Hae-Won Kim, Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea. Email: kimhw@ 123456dku.edu
                Author information
                https://orcid.org/0000-0001-6400-6100
                Article
                10.1177_2041731419826433
                10.1177/2041731419826433
                6357292
                30728938
                63641f81-bc82-4dcb-afcc-bbfeb4e3804e
                © The Author(s) 2019

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 31 August 2018
                : 7 January 2019
                Funding
                Funded by: National Research Foundation of Korea, FundRef https://doi.org/10.13039/501100003725;
                Award ID: 2015-0093829
                Categories
                Original Article
                Custom metadata
                January-December 2019

                Biomedical engineering
                biphasic scaffolds,nanofibrous surface,dense surface,chondrocyte maintenance,osteogenesis,matrix adhesion,cell–cell contact,osteochondral engineering

                Comments

                Comment on this article