2
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Titer of Antibody Against Pneumococcal IgA1 Protease in Healthy Individuals

      , , , , ,
      The Open Microbiology Journal
      Bentham Science Publishers Ltd.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives:

          Considering rising antibiotic resistance in various strains of Streptococcus pneumoniae, there is a need to find new immunogenic candidates for developing pneumococcal vaccines. Immunoglobulin A1 (IgA1) protease is one of the virulence factors playing an important role in the pathogenesis of S. pneumoniae infections. In the present study, we aimed to evaluate the titer of antibody against pneumococcal recombinant IgA1 protease in the serum of healthy humans.

          Materials and Methods:

          A part of the IgA1 protease gene (705 bp) from S. pneumonia ATCC 49619 was amplified by PCR and then digested using restriction enzymes and ligated by the pET28a expression vector. The recombinant protein was expressed in E. coli BL21 strain. Affinity chromatography was used to purify the protein. The titer of antibody against the recombinant protease was determined in healthy individuals in three age groups of <2, 2-40, and > 40 years using indirect Enzyme-Linked Immunosorbent Assay (ELISA).

          Results:

          The expression and purification of the IgA1 recombinant protease were successful. The concentration of the purified protein was determined as 1.013 mg/ml using the NanoDrop method. The titer of anti-recombinant IgA1 protease antibody (20, 40, 80 and 160) showed a significant correlation with age (p-value<0.05). According to our results, the antibody titer was desirable, especially in individuals over two years old.

          Conclusion:

          In the present study, desirable antibody titers against the pneumococcal recombinant IgA1 protease were seen in the three groups’ serum of healthy individuals. However, a significant correlation was not totally observed among groups.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Streptococcus pneumoniae: transmission, colonization and invasion

          Streptococcus pneumoniae as a complex relationship with its obligate human host. On the one hand, the pneumococci are highly adapted commensals, and their main reservoir on the mucosal surface of the upper airways of carriers enables transmission. On the other hand, they can cause severe disease when bacterial and host factors allow them to invade essentially sterile sites, such as the middle ear spaces, lungs, bloodstream and meninges. Transmission, colonization and invasion depend on the remarkable ability of S. pneumoniae to evade or take advantage of the host inflammatory and immune responses. The different stages of pneumococcal carriage and disease have been investigated in detail in animal models and, more recently, in experimental human infection. Furthermore, widespread vaccination and the resulting immune pressure have shed light on pneumococcal population dynamics and pathogenesis. Here, we review the mechanistic insights provided by these studies on the multiple and varied interactions of the pneumococcus and its host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae.

            Five of seven serotypes in the pneumococcal conjugate vaccine, introduced for infants in the United States in 2000, are responsible for most penicillin-resistant infections. We examined the effect of this vaccine on invasive disease caused by resistant strains. We used laboratory-based data from Active Bacterial Core surveillance to measure disease caused by antibiotic-nonsusceptible pneumococci from 1996 through 2004. Cases of invasive disease, defined as disease caused by pneumococci isolated from a normally sterile site, were identified in eight surveillance areas. Isolates underwent serotyping and susceptibility testing. Rates of invasive disease caused by penicillin-nonsusceptible strains and strains not susceptible to multiple antibiotics peaked in 1999 and decreased by 2004, from 6.3 to 2.7 cases per 100,000 (a decline of 57 percent; 95 percent confidence interval, 55 to 58 percent) and from 4.1 to 1.7 cases per 100,000 (a decline of 59 percent; 95 percent confidence interval, 58 to 60 percent), respectively. Among children under two years of age, disease caused by penicillin-nonsusceptible strains decreased from 70.3 to 13.1 cases per 100,000 (a decline of 81 percent; 95 percent confidence interval, 80 to 82 percent). Among persons 65 years of age or older, disease caused by penicillin-nonsusceptible strains decreased from 16.4 to 8.4 cases per 100,000 (a decline of 49 percent). Rates of resistant disease caused by vaccine serotypes fell 87 percent. An increase was seen in disease caused by serotype 19A, a serotype not included in the vaccine (from 2.0 to 8.3 per 100,000 among children under two years of age). The rate of antibiotic-resistant invasive pneumococcal infections decreased in young children and older persons after the introduction of the conjugate vaccine. There was an increase in infections caused by serotypes not included in the vaccine. Copyright 2006 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease.

              Streptococcus pneumoniae is a Gram-positive bacterial pathogen that colonizes the mucosal surfaces of the host nasopharynx and upper airway. Through a combination of virulence-factor activity and an ability to evade the early components of the host immune response, this organism can spread from the upper respiratory tract to the sterile regions of the lower respiratory tract, which leads to pneumonia. In this Review, we describe how S. pneumoniae uses its armamentarium of virulence factors to colonize the upper and lower respiratory tracts of the host and cause disease.
                Bookmark

                Author and article information

                Journal
                The Open Microbiology Journal
                TOMICROJ
                Bentham Science Publishers Ltd.
                1874-2858
                September 18 2020
                September 18 2020
                : 14
                : 1
                : 229-233
                Article
                10.2174/1874285802014010229
                634d90af-1864-4937-9a0d-bdf6578d9a7f
                © 2020

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Medicine,Chemistry,Life sciences
                Medicine, Chemistry, Life sciences

                Comments

                Comment on this article