13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subcellular Comparison of Visible-Light Optical Coherence Tomography and Electron Microscopy in the Mouse Outer Retina

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          We employed in vivo, 1.0-µm axial resolution visible-light optical coherence tomography (OCT) and ex vivo electron microscopy (EM) to investigate three subcellular features in the mouse outer retina: reflectivity oscillations inner to band 1 (study 1); hyperreflective band 2, attributed to the ellipsoid zone or inner segment/outer segment (IS/OS) junction (study 2); and the hyperreflective retinal pigment epithelium (RPE) within band 4 (study 3).

          Methods

          Pigmented (C57BL/6J, n = 10) and albino (BALB/cJ, n = 3) mice were imaged in vivo. Enucleated eyes were processed for light and electron microscopy. Using well-accepted reference surfaces, we compared micrometer-scale axial reflectivity of visible-light OCT with subcellular organization, as revealed by 9449 annotated EM organelles and features across four pigmented eyes.

          Results

          In study 1, outer nuclear layer reflectivity peaks coincided with valleys in heterochromatin clump density (−0.34 ± 2.27 µm limits of agreement [LoA]). In study 2, band 2 depth on OCT and IS/OS junction depth on EM agreed (−0.57 ± 0.76 µm LoA), with both having similar distributions. In study 3, RPE electron dense organelle distribution did not agree with reflectivity in C57BL/6J mice, with OCT measures of RPE thickness exceeding those of EM (2.09 ± 0.89 µm LoA). Finally, RPE thickness increased with age in pigmented mice (slope = 0.056 µm/mo; P = 6.8 × 10 −7).

          Conclusions

          Visible-light OCT bands arise from subcellular organization, enabling new measurements in mice. Quantitative OCT–EM comparisons may be confounded by hydration level, particularly in the OS and RPE. Caution is warranted in generalizing results to other species.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Optical coherence tomography.

          A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as approximately 10(-10) of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus.

            To develop a consensus nomenclature for the classification of retinal and choroidal layers and bands visible on spectral-domain optical coherence tomography (SD-OCT) images of a normal eye.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model.

              To evaluate the validity of commonly used anatomical designations for the four hyperreflective outer retinal bands seen in current-generation optical coherence tomography, a scale model of outer retinal morphology was created using published information for direct comparison with optical coherence tomography scans. Articles and books concerning histology of the outer retina from 1900 until 2009 were evaluated, and data were used to create a scale model drawing. Boundaries between outer retinal tissue compartments described by the model were compared with intensity variations of representative spectral-domain optical coherence tomography scans using longitudinal reflectance profiles to determine the region of origin of the hyperreflective outer retinal bands. This analysis showed a high likelihood that the spectral-domain optical coherence tomography bands attributed to the external limiting membrane (the first, innermost band) and to the retinal pigment epithelium (the fourth, outermost band) are correctly attributed. Comparative analysis showed that the second band, often attributed to the boundary between inner and outer segments of the photoreceptors, actually aligns with the ellipsoid portion of the inner segments. The third band corresponded to an ensheathment of the cone outer segments by apical processes of the retinal pigment epithelium in a structure known as the contact cylinder. Anatomical attributions and subsequent pathophysiologic assessments pertaining to the second and third outer retinal hyperreflective bands may not be correct. This analysis has identified testable hypotheses for the actual correlates of the second and third bands. Nonretinal pigment epithelium contributions to the fourth band (e.g., Bruch membrane) remain to be determined.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest Ophthalmol Vis Sci
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                09 August 2022
                August 2022
                : 63
                : 9
                : 10
                Affiliations
                [1 ]Department of Radiology, NYU Langone Health, New York, New York, United States
                [2 ]Department of Biomedical Engineering, University of California Davis, Davis, California, United States
                [3 ]Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
                [4 ]Biological Electron Microscopy Facility, University of California Davis, Davis, California, United States
                [5 ]Department of Ophthalmology, NYU Langone Health, New York, New York, United States
                Author notes
                [* ]Correspondence: Vivek J. Srinivasan, Department of Radiology, NYU Langone Health, 550 1st Avenue, New York, NY 10016, USA; vivek.srinivasan@ 123456nyulangone.org .
                Article
                IOVS-22-34908
                10.1167/iovs.63.9.10
                9379865
                35943734
                633ea365-881c-4b1b-bc18-c4d19a6afcb9
                Copyright 2022 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 30 June 2022
                : 09 March 2022
                Page count
                Pages: 12
                Categories
                Multidisciplinary Ophthalmic Imaging
                Multidisciplinary Ophthalmic Imaging

                optical coherence tomography,electron microscopy,retinal pigment epithelium,retina,inner segment/outer segment junction

                Comments

                Comment on this article