5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Effects of Virtual Reality Nonphysical Mental Training on Coordination and Skill Transfer in Healthy Adults

      ,
      Journal of Sport Rehabilitation
      Human Kinetics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context: Mental training is a promising method to improve motor skills. However, transfer of these improvements to different skills or functional activities is still unclear. The purpose of this study was to investigate the effects of mental balance training programs on motor coordination and skill transfer. Design: Randomized controlled trial. Methods: Fifty-seven healthy adults (28 females and 29 males) aged between 18 and 25 years participated in this study. Participants were randomly assigned to 3 groups: virtual reality (VR) mental training group, conventional mental training group, and control group. The training program included action observation and motor imagery practice with balance exercise videos. The VR mental training group trained with a VR head-mounted display and the conventional mental training group trained with a nonimmersive computer monitor for 30 minutes, 3 days per week, for 4 weeks. Coordination skills were tested with 2 separate custom-made obstacle course tests (OCT-1 and OCT-2). OCT tests included crouching, turning, leaning, stepping over, changing direction, walking on various surfaces, or using repeated hand and arm movement tasks. OCT-1 was used to investigate the effects of mental exercises on coordination skills, and OCT-2 to investigate transfer effects for novel tasks. Test time (total and corrected) and error types (minor, major, and total) were recorded. Touching an obstacle without changing its position was classified as a minor error, and changing its position was a major error. Results: OCT-1 test time and number of errors significantly decreased in the VR mental training and conventional mental training groups, but not in the control group. The number of minor errors was only decreased in the VR mental training group. For OCT-2, total and corrected time were not significantly different between the groups. However, both training groups were significantly superior to the control group for all types of errors. Conclusions: Our findings suggest that both training interventions can significantly improve coordination and skill transfer test results. In addition, VR mental training may have some advantages over conventional mental training. These findings are promising for the use of mental training for prevention and rehabilitation in special populations.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of sensorimotor learning.

            The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complementary roles of basal ganglia and cerebellum in learning and motor control.

              K Doya (2000)
              The classical notion that the basal ganglia and the cerebellum are dedicated to motor control has been challenged by the accumulation of evidence revealing their involvement in non-motor, cognitive functions. From a computational viewpoint, it has been suggested that the cerebellum, the basal ganglia, and the cerebral cortex are specialized for different types of learning: namely, supervised learning, reinforcement learning and unsupervised learning, respectively. This idea of learning-oriented specialization is helpful in understanding the complementary roles of the basal ganglia and the cerebellum in motor control and cognitive functions.
                Bookmark

                Author and article information

                Journal
                Journal of Sport Rehabilitation
                Human Kinetics
                1056-6716
                1543-3072
                May 1 2022
                May 1 2022
                : 31
                : 4
                : 442-451
                Article
                10.1123/jsr.2021-0198
                35078153
                63277b35-2d4f-44c6-909a-22adfa3c1b7a
                © 2022
                History

                Comments

                Comment on this article