14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Visual activity predicts auditory recovery from deafness after adult cochlear implantation

      , , , , , ,
      Brain
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          The brain basis of language processing: from structure to function.

          Language processing is a trait of human species. The knowledge about its neurobiological basis has been increased considerably over the past decades. Different brain regions in the left and right hemisphere have been identified to support particular language functions. Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes. These networks have been substantiated both by functional as well as by structural connectivity data. Electrophysiological measures indicate that within these networks syntactic processes of local structure building precede the assignment of grammatical and semantic relations in a sentence. Suprasegmental prosodic information overtly available in the acoustic language input is processed predominantly in a temporo-frontal network in the right hemisphere associated with a clear electrophysiological marker. Studies with patients suffering from lesions in the corpus callosum reveal that the posterior portion of this structure plays a crucial role in the interaction of syntactic and prosodic information during language processing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cross-modal plasticity: where and how?

            Animal studies have shown that sensory deprivation in one modality can have striking effects on the development of the remaining modalities. Although recent studies of deaf and blind humans have also provided convincing behavioural, electrophysiological and neuroimaging evidence of increased capabilities and altered organization of spared modalities, there is still much debate about the identity of the brain systems that are changed and the mechanisms that mediate these changes. Plastic changes across brain systems and related behaviours vary as a function of the timing and the nature of changes in experience. This specificity must be understood in the context of differences in the maturation rates and timing of the associated critical periods, differences in patterns of transiently existing connections, and differences in molecular factors across brain systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of the primary visual cortex by Braille reading in blind subjects.

              Primary visual cortex receives visual input from the eyes through the lateral geniculate nuclei, but is not known to receive input from other sensory modalities. Its level of activity, both at rest and during auditory or tactile tasks, is higher in blind subjects than in normal controls, suggesting that it can subserve nonvisual functions; however, a direct effect of non-visual tasks on activation has not been demonstrated. To determine whether the visual cortex receives input from the somatosensory system we used positron emission tomography (PET) to measure activation during tactile discrimination tasks in normal subjects and in Braille readers blinded in early life. Blind subjects showed activation of primary and secondary visual cortical areas during tactile tasks, whereas normal controls showed deactivation. A simple tactile stimulus that did not require discrimination produced no activation of visual areas in either group. Thus in blind subjects, cortical areas normally reserved for vision may be activated by other sensory modalities.
                Bookmark

                Author and article information

                Journal
                Brain
                Oxford University Press (OUP)
                1460-2156
                0006-8950
                December 2013
                December 01 2013
                October 17 2013
                December 2013
                December 01 2013
                October 17 2013
                : 136
                : 12
                : 3682-3695
                Article
                10.1093/brain/awt274
                24136826
                631f426c-95f8-425d-a34f-34317576d561
                © 2013
                History

                Comments

                Comment on this article