29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Responses of bacterial and archaeal communities to the addition of straw during anaerobic digestion of manure at different temperatures (37°C, 44°C and 52°C) were investigated using five laboratory-scale semi-continuous stirred tank reactors. The results revealed that including straw as co-substrate decreased the species richness for bacteria, whereas increasing the operating temperature decreased the species richness for both archaea and bacteria, and also the evenness of the bacteria. Taxonomic classifications of the archaeal community showed that Methanobrevibacter dominated in the manure samples, while Methanosarcina dominated in all digesters regardless of substrate. Increase of the operating temperature to 52°C led to increased relative abundance of Methanoculleus and Methanobacterium. Among the bacteria, the phyla Firmicutes and Bacteroidetes dominated within all samples. Compared with manure itself, digestion of manure resulted in a higher abundance of an uncultured class WWE1 and lower abundance of Bacilli. Adding straw to the digesters increased the level of Bacteroidia, while increasing the operating temperature decreased the level of this class and instead increased the relative abundance of an uncultured genus affiliated to order MBA08 (Clostridia). A considerable fraction of bacterial sequences could not be allocated to genus level, indicating that novel phylotypes are resident in these communities.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Pretreatments to enhance the digestibility of lignocellulosic biomass.

          Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a goal to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effect(s) on the cellulose, hemicellulose and lignin; the three main components of lignocellulosic biomass. This paper reviews the different effect(s) of several pretreatments on the three main parts of the lignocellulosic biomass to improve its digestibility. Steam pretreatment, lime pretreatment, liquid hot water pretreatments and ammonia based pretreatments are concluded to be pretreatments with high potentials. The main effects are dissolving hemicellulose and alteration of lignin structure, providing an improved accessibility of the cellulose for hydrolytic enzymes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Using ecological diversity measures with bacterial communities.

            Abstract There are many ecological diversity measures, but their suitability for use with highly diverse bacterial communities is unclear and seldom considered. We assessed a range of species richness and evenness/dominance indices, and the use of species abundance models using samples of bacteria from zinc-contaminated and control soils. Bacteria were assigned to operational taxonomic units (OTUs) using amplified ribosomal DNA restriction analysis of 236 clones from each soil. The reduced diversity apparent in the contaminated soil was reflected by the diversity indices to varying degrees. The number of clones analysed and the weighting given to rare vs. abundant OTUs are the most important considerations when selecting measures. Our preferences, arrived at using theory and practical experience, include: the log series index alpha; the Q statistic (but only if coverage is 50% or more); the Berger-Parker and Simpson's indices, although their ecological relevance may be limited; and, unexpectedly, the Shannon-Wiener and Shannon evenness indices, even though their meanings may not be clear and their values inaccurate when coverage is low. For extrapolation, the equation for the log series distribution seems the best for extrapolating from OTU accumulation curves while non-parametric methods, such as Chao 1, show promise for estimating total OTU richness. Due to a preponderance of single-occurrence OTUs, none of the five species abundance models fit the OTU abundance distribution of the control soil, but both the log and log normal models fit the less diverse contaminated soil. Species abundance models are useful, irrespective of coverage, because they address the whole distribution of a sample, aiding comparison by revealing overall trends as well as specific changes in particular abundance classes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial cellulose utilization: fundamentals and biotechnology.

              Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
                Bookmark

                Author and article information

                Journal
                Microb Biotechnol
                Microb Biotechnol
                mbt2
                Microbial Biotechnology
                John Wiley & Sons, Ltd (Chichester, UK )
                1751-7915
                1751-7915
                September 2015
                08 July 2015
                : 8
                : 5
                : 815-827
                Affiliations
                [1 ]Department of Microbiology, Swedish University of Agricultural Science, Uppsala BioCenter P.O. Box 7025, SE-750 07, Uppsala, Sweden
                [2 ]Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences P.O. Box 5003, NO-1432, Ås, Norway
                Author notes
                * For correspondence. E-mail Anna.Schnurer@ 123456slu.se ; Tel. (+46) 18 673288; Fax (+46) 18 673392.

                Funding Information We acknowledge MicroDrive ( http://www.slu.se/microdrive) and The Swedish Energy Agency for the financial support. This work was also funded in part by the Research Council of Norway, Grant Numbers 190877/S60 and 203402/E20.

                Article
                10.1111/1751-7915.12298
                4554469
                26152665
                630f27bf-2308-40a3-ba47-8ea401c0e9bf
                Journal compilation © 2015 John Wiley & Sons Ltd and Society for Applied Microbiology

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 December 2014
                : 13 May 2015
                Categories
                Research Articles

                Biotechnology
                Biotechnology

                Comments

                Comment on this article