41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In the model system Drosophila melanogaster, doublesex ( dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs.

          Results

          In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti ( Aeadsx). Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR) led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators.

          Conclusions

          This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae Anopheles gambiae orthologue. In Aedes aegypti, the dsx gene is sex-specifically regulated and encodes two female-specific and one male-specific isoforms, all sharing a doublesex/ mab-3 (DM) domain-containing N-terminus and different C-termini. The sex-specific regulation is based on a combination of exon skipping, 5' alternative splice site choice and, most likely, alternative polyadenylation. Interestingly, when the Aeadsx gene is compared to the Anopheles dsx ortholog, there are differences in the in silico predicted default and regulated sex-specific splicing events, which suggests that the upstream regulators either are different or act in a slightly different manner. Furthermore, this study is a premise for the future development of transgenic sexing strains in mosquitoes useful for sterile insect technique (SIT) programs.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment.

          A wealth of protein and DNA sequence data is being generated by genome projects and other sequencing efforts. A crucial barrier to deciphering these sequences and understanding the relations among them is the difficulty of detecting subtle local residue patterns common to multiple sequences. Such patterns frequently reflect similar molecular structures and biological properties. A mathematical definition of this "local multiple alignment" problem suitable for full computer automation has been used to develop a new and sensitive algorithm, based on the statistical method of iterative sampling. This algorithm finds an optimized local alignment model for N sequences in N-linear time, requiring only seconds on current workstations, and allows the simultaneous detection and optimization of multiple patterns and pattern repeats. The method is illustrated as applied to helix-turn-helix proteins, lipocalins, and prenyltransferases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides.

            The doublesex (dsx) gene regulates somatic sexual differentiation in both sexes in D. melanogaster. Two functional products are encoded by dsx: one product is expressed in females and represses male differentiation, and the other is expressed in males and represses female differentiation. We have determined that the dsx gene is transcribed to produce a common primary transcript that is alternatively spliced and polyadenylated to yield male- and female-specific mRNAs. These sex-specific mRNAs share a common 5' end and three common exons, but possess alternative sex-specific 3' exons, thus encoding polypeptides with a common amino-terminal sequence but sex-specific carboxyl termini. Genetic and molecular data suggest that sequences including and adjacent to the female-specific splice acceptor site play an important role in the regulation of dsx expression by the transformer and transformer-2 loci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Female-specific flightless phenotype for mosquito control.

              Dengue and dengue hemorrhagic fever are increasing public health problems with an estimated 50-100 million new infections each year. Aedes aegypti is the major vector of dengue viruses in its range and control of this mosquito would reduce significantly human morbidity and mortality. Present mosquito control methods are not sufficiently effective and new approaches are needed urgently. A "sterile-male-release" strategy based on the release of mosquitoes carrying a conditional dominant lethal gene is an attractive new control methodology. Transgenic strains of Aedes aegypti were engineered to have a repressible female-specific flightless phenotype using either two separate transgenes or a single transgene, based on the use of a female-specific indirect flight muscle promoter from the Aedes aegypti Actin-4 gene. These strains eliminate the need for sterilization by irradiation, permit male-only release ("genetic sexing"), and enable the release of eggs instead of adults. Furthermore, these strains are expected to facilitate area-wide control or elimination of dengue if adopted as part of an integrated pest management strategy.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2011
                10 February 2011
                : 11
                : 41
                Affiliations
                [1 ]Department of Biological Sciences - Section of Genetics and Molecular Biology. University of Naples "Federico II" - Italy
                [2 ]CDF - Centro Diagnostico Flegreo, Naples - Italy
                [3 ]Department of Public Health - Parasitology Section. University of Rome "La Sapienza" - Italy
                [4 ]Department of Structural and Functional Biology. University of Naples "Federico II" - Italy
                [5 ]Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" CNR Naples - Italy
                Article
                1471-2148-11-41
                10.1186/1471-2148-11-41
                3045327
                21310052
                62fab597-8303-4466-9b6a-d3088d12638d
                Copyright ©2011 Salvemini et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 July 2010
                : 10 February 2011
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article