63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dendritic Cell-Derived Exosomes Promote Natural Killer Cell Activation and Proliferation: A Role for NKG2D Ligands and IL-15Rα

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic cell (DC) derived-exosomes (Dex) are nanomeric vesicles harboring functional MHC/peptide complexes promoting T cell-dependent tumor rejection. In the first Phase I trial using peptide-pulsed Dex, the observation of clinical regressions in the absence of T cell responses prompted the search for alternate effector mechanisms. Mouse studies unraveled the bioactivity of Dex on NK cells. Indeed, Dex promoted an IL-15Rα- and NKG2D-dependent NK cell proliferation and activation respectively, resulting in anti-metastatic effects mediated by NK1.1 + cells. In humans, Dex express functional IL-15Rα which allow proliferation and IFNγ secretion by NK cells. In contrast to immature DC, human Dex harbor NKG2D ligands on their surface leading to a direct engagement of NKG2D and NK cell activation ex vivo. In our phase I clinical trial, we highlight the capacity of Dex based-vaccines to restore the number and NKG2D-dependent function of NK cells in 7/14 patients. Altogether, these data provide a mechanistic explanation on how Dex may stimulate non MHC restricted-anti-tumor effectors and induce tumor regression in vivo.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Effector memory T cells, early metastasis, and survival in colorectal cancer.

          The role of tumor-infiltrating immune cells in the early metastatic invasion of colorectal cancer is unknown. We studied pathological signs of early metastatic invasion (venous emboli and lymphatic and perineural invasion) in 959 specimens of resected colorectal cancer. The local immune response within the tumor was studied by flow cytometry (39 tumors), low-density-array real-time polymerase-chain-reaction assay (75 tumors), and tissue microarrays (415 tumors). Univariate analysis showed significant differences in disease-free and overall survival according to the presence or absence of histologic signs of early metastatic invasion (P<0.001). Multivariate Cox analysis showed that an early conventional pathological tumor-node-metastasis stage (P<0.001) and the absence of early metastatic invasion (P=0.04) were independently associated with increased survival. As compared with tumors with signs of early metastatic invasion, tumors without such signs had increased infiltrates of immune cells and increased levels of messenger RNA (mRNA) for products of type 1 helper effector T cells (CD8, T-BET [T-box transcription factor 21], interferon regulatory factor 1, interferon-gamma, granulysin, and granzyme B) but not increased levels of inflammatory mediators or immunosuppressive molecules. The two types of tumors had significant differences in the levels of expression of 65 combinations of T-cell markers, and hierarchical clustering showed that markers of T-cell migration, activation, and differentiation were increased in tumors without signs of early metastatic invasion. The latter type of tumors also had increased numbers of CD8+ T cells, ranging from early memory (CD45RO+CCR7-CD28+CD27+) to effector memory (CD45RO+CCR7-CD28-CD27-) T cells. The presence of high levels of infiltrating memory CD45RO+ cells, evaluated immunohistochemically, correlated with the absence of signs of early metastatic invasion, a less advanced pathological stage, and increased survival. Signs of an immune response within colorectal cancers are associated with the absence of pathological evidence of early metastatic invasion and with prolonged survival. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer immunotherapy: moving beyond current vaccines.

            Great progress has been made in the field of tumor immunology in the past decade, but optimism about the clinical application of currently available cancer vaccine approaches is based more on surrogate endpoints than on clinical tumor regression. In our cancer vaccine trials of 440 patients, the objective response rate was low (2.6%), and comparable to the results obtained by others. We consider here results in cancer vaccine trials and highlight alternate strategies that mediate cancer regression in preclinical and clinical models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer

              Background There is a continued need to develop more effective cancer immunotherapy strategies. Exosomes, cell-derived lipid vesicles that express high levels of a narrow spectrum of cell proteins represent a novel platform for delivering high levels of antigen in conjunction with costimulatory molecules. We performed this study to test the safety, feasibility and efficacy of autologous dendritic cell (DC)-derived exosomes (DEX) loaded with the MAGE tumor antigens in patients with non-small cell lung cancer (NSCLC). Methods This Phase I study enrolled HLA A2+ patients with pre-treated Stage IIIb (N = 4) and IV (N = 9) NSCLC with tumor expression of MAGE-A3 or A4. Patients underwent leukapheresis to generate DC from which DEX were produced and loaded with MAGE-A3, -A4, -A10, and MAGE-3DPO4 peptides. Patients received 4 doses of DEX at weekly intervals. Results Thirteen patients were enrolled and 9 completed therapy. Three formulations of DEX were evaluated; all were well tolerated with only grade 1–2 adverse events related to the use of DEX (injection site reactions (N = 8), flu like illness (N = 1), and peripheral arm pain (N = 1)). The time from the first dose of DEX until disease progression was 30 to 429+ days. Three patients had disease progression before the first DEX dose. Survival of patients after the first DEX dose was 52–665+ days. DTH reactivity against MAGE peptides was detected in 3/9 patients. Immune responses were detected in patients as follows: MAGE-specific T cell responses in 1/3, increased NK lytic activity in 2/4. Conclusion Production of the DEX vaccine was feasible and DEX therapy was well tolerated in patients with advanced NSCLC. Some patients experienced long term stability of disease and activation of immune effectors
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                25 March 2009
                : 4
                : 3
                : e4942
                Affiliations
                [1 ]Institut National de la Santé et de la Recherche Médicale, Unité 805, Villejuif, France
                [2 ]Institut Gustave Roussy, Villejuif, France
                [3 ]Center of Clinical Investigations in Biotherapies CICBT507, Institut Gustave Roussy, Villejuif, France
                [4 ]Department of Hepatogastroenterology, Hôpital Européen Georges Pompidou, APHP, Paris, France
                [5 ]Department of Immunotherapy, Institut Gustave Roussy, Villejuif, France
                [6 ]Department of Dermatology, Institut Gustave Roussy, Villejuif, France
                [7 ]Institut National de la Santé et de la Recherche Médicale, Unité 561, Hôpital Saint Vincent de Paul, Paris, France
                [8 ]Faculté de Médecine de l'université Paris-Sud XI, Le Kremlin-Bicêtre, France
                University of Sheffield, United Kingdom
                Author notes

                Conceived and designed the experiments: SV MT LZ NC. Performed the experiments: SV MT CF JT FA SN SCZ NC. Analyzed the data: SV MT NC. Contributed reagents/materials/analysis tools: BE CR TT. Wrote the paper: SV MT LZ NC.

                Article
                08-PONE-RA-07551R1
                10.1371/journal.pone.0004942
                2657211
                19319200
                62f21404-7861-4f4d-ab1e-4d94bc0ef1fa
                Viaud et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 December 2008
                : 29 January 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Immunology
                Oncology
                Immunology/Immune Response
                Immunology/Innate Immunity
                Immunology/Leukocyte Activation

                Uncategorized
                Uncategorized

                Comments

                Comment on this article