2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1‐Nrf2 signaling pathway

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.

          Transcription factor Nrf2 is a major regulator of genes encoding phase 2 detoxifying enzymes and antioxidant stress proteins in response to electrophilic agents and oxidative stress. In the absence of such stimuli, Nrf2 is inactive owing to its cytoplasmic retention by Keap1 and rapid degradation through the proteasome system. We examined the contribution of Keap1 to the rapid turnover of Nrf2 (half-life of less than 20 min) and found that a direct association between Keap1 and Nrf2 is required for Nrf2 degradation. In a series of domain function analyses of Keap1, we found that both the BTB and intervening-region (IVR) domains are crucial for Nrf2 degradation, implying that these two domains act to recruit ubiquitin-proteasome factors. Indeed, Cullin 3 (Cul3), a subunit of the E3 ligase complex, was found to interact specifically with Keap1 in vivo. Keap1 associates with the N-terminal region of Cul3 through the IVR domain and promotes the ubiquitination of Nrf2 in cooperation with the Cul3-Roc1 complex. These results thus provide solid evidence that Keap1 functions as an adaptor of Cul3-based E3 ligase. To our knowledge, Nrf2 and Keap1 are the first reported mammalian substrate and adaptor, respectively, of the Cul3-based E3 ligase system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis.

            There are numerous extra- and intra-cellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause the damage of biomolecules such as proteins, nucleic acid and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2

              Clinical application of doxorubicin (DOX), an anthracycline antibiotic with potent anti- tumor effects, is limited because of its cardiotoxicity. However, its pathogenesis is still not entirely understood. The aim of this paper was to explore the mechanisms and new drug targets to treat DOX-induced cardiotoxicity. The in vitro model on H9C2 cells and the in vivo models on rats and mice were developed. The results showed that DOX markedly decreased H9C2 cell viability, increased the levels of CK, LDH, caused histopathological and ECG changes in rats and mice, and triggered myocardial oxidative damage via adjusting the levels of intracellular ROS, MDA, SOD, GSH and GSH-Px. Total of 18 differentially expressed microRNAs in rat heart tissue caused by DOX were screened out using microRNA microarray assay, especially showing that miR-140-5p was significantly increased by DOX which was selected as the target miRNA. Double-luciferase reporter assay showed that miR-140-5p directly targeted Nrf2 and Sirt2, as a result of affecting the expression levels of HO-1, NQO1, Gst, GCLM, Keap1 and FOXO3a, and thereby increasing DOX-caused myocardial oxidative damage. In addition, the levels of intracellular ROS were significantly increased or decreased in H9C2 cells treated with DOX after miR-140-5p mimic or miR-140-5p inhibitor transfection, respectively, as well as the changed expression levels of Nrf2 and Sirt2. Furthermore, DOX- induced myocardial oxidative damage was worsened in mice treated with miR-140-5p agomir, and however the injury was alleviated in the mice administrated with miR-140-5p antagomir. Therefore, miR-140-5p plays an important role in DOX-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Our data provide novel insights for investigating DOX-induced heart injury. In addition, miR-140-5p/ Nrf2 and miR-140-5p/Sirt2 may be the new targets to treat DOX-induced cardiotoxicity.
                Bookmark

                Author and article information

                Contributors
                Journal
                BioFactors
                BioFactors
                Wiley
                0951-6433
                1872-8081
                May 2020
                December 28 2019
                May 2020
                : 46
                : 3
                : 441-453
                Affiliations
                [1 ]Department of OrthopaedicsThe First Affiliated Hospital of Anhui Medical University Hefei China
                [2 ]Department of UltrasoundThe First Affiliated Hospital of Anhui Medical University Hefei China
                [3 ]Department of OrthopaedicsThe Second Affiliated Hospital of Bengbu Medical College Bengbu China
                [4 ]Endoscopy CenterThe First Affiliated Hospital of Anhui Medical University Hefei China
                [5 ]Department of Histology and EmbryologyAnhui Medical University Hefei China
                Article
                10.1002/biof.1599
                31883358
                62aa3167-8823-43b9-b120-9ca49bd46883
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article