18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Quantitative Interrelation between Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation Using a Biomimetic Kinetic Model

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analytical methods based on ultraperformance liquid chromatography/ion-trap mass spectrometry (UPLC/ion-trap MS) were developed for quantification of atractylenolide I, II, and III in the methanol extract of Atractylodes japonica rhizomes with a C 18 column in an acidified water/acetonitrile gradient eluent in an LC system, and ion-trap MS coupled with electrospray ionization was employed under positive-ion mode. The three atractylenolides were quantified in all A. japonica samples, and the content of atractylenolide I, II, and III showed a significant correlation to each other. Such high correlation was explained by the mechanistic insights into the biosynthetic pathway of atractylenoide III and I from atractylenoide II by using the biomimetic cytochrome P450 model, [Fe(tmp)](CF 3SO 3) (tmp = meso-tetramesitylporphyrin). Atractylenolides could be transformed by oxidation via the oxidative enzyme in the A. japonica plant. The present study first reports the first oxidative transformation of atractylenolides using the heme iron model complex.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimating Pearson's Correlation Coefficient with Bootstrap Confidence Interval from Serially Dependent Time Series

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Catalase is a key enzyme in seed recovery from ageing during priming.

            Ageing induces seed deterioration expressed as the loss of seed vigour and/or viability. Priming treatment, which consists in soaking of seeds in a solution of low water potential, has been shown to reinvigorate aged seeds. We investigate the importance of catalase in oxidation protection during accelerated ageing and repair during subsequent priming treatment of sunflower (Helianthus annuus L.) seeds. Seeds equilibrated to 0.29g H2Og(-1) dry matter (DM) were aged at 35°C for different durations and then primed by incubation for 7 days at 15°C in a solution of polyethylene glycol 8000 at -2MPa. Accelerated ageing affected seed germination and priming treatment reversed partially the ageing effect. The inhibition of catalase by the addition of aminotriazol during priming treatment reduced seed repair indicating that catalase plays a key role in protection and repair systems during ageing. Ageing was associated with H2O2 accumulation as showed by biochemical quantification and CeCl3 staining. Catalase was reduced at the level of gene expression, protein content and affinity. Interestingly, priming induced catalase synthesis by activating expression and translation of the enzyme. Immunocytolocalization of catalase showed that the enzyme co-localized with H2O2 in the cytosol. These results clearly indicate that priming induce the synthesis of catalase which is involved in seed recovery during priming. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets

              Background Jasmonic acid (JA) is a well-characterized signaling molecule in plant defense responses. However, its relationships with other signal molecules in secondary metabolite production induced by endophytic fungus are largely unknown. Atractylodes lancea (Asteraceae) is a traditional Chinese medicinal plant that produces antimicrobial volatiles oils. We incubated plantlets of A. lancea with the fungus Gilmaniella sp. AL12. to research how JA interacted with other signal molecules in volatile oil production. Results Fungal inoculation increased JA generation and volatile oil accumulation. To investigate whether JA is required for volatile oil production, plantlets were treated with JA inhibitors ibuprofen (IBU) and nordihydroguaiaretic acid. The inhibitors suppressed both JA and volatile oil production, but fungal inoculation could still induce volatile oils. Plantlets were further treated with the nitric oxide (NO)-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the H2O2 inhibitors diphenylene iodonium (DPI) and catalase (CAT), and the salicylic acid (SA) biosynthesis inhibitors paclobutrazol and 2-aminoindan-2-phosphonic acid. With fungal inoculation, IBU did not inhibit NO production, and JA generation was significantly suppressed by cPTIO, showing that JA may act as a downstream signal of the NO pathway. Exogenous H2O2 could reverse the inhibitory effects of cPTIO on JA generation, indicating that NO mediates JA induction by the fungus through H2O2-dependent pathways. With fungal inoculation, the H2O2 scavenger DPI/CAT could inhibit JA generation, but IBU could not inhibit H2O2 production, implying that H2O2 directly mediated JA generation. Finally, JA generation was enhanced when SA production was suppressed, and vice versa. Conclusions Jasmonic acid acts as a downstream signaling molecule in NO- and H2O2-mediated volatile oil accumulation induced by endophytic fungus and has a complementary interaction with the SA signaling pathway.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                05 November 2018
                30 November 2018
                : 3
                : 11
                : 14833-14840
                Affiliations
                []Division of Pharmacology, School of Korean Medicine, Pusan National University , 50612 Yangsan, Republic of Korea
                []Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women’s University , 04310 Seoul, Republic of Korea
                [3] §Department of Herbology, College of Korean Medicine, and Research Center of Traditional Korean Medicine, Wonkwang University , 54538 Iksan, Republic of Korea
                Author notes
                [* ]E-mail: kmsct@ 123456pusan.ac.kr . Phone: +82 51 510 8456. Fax: +82 510 510 8420 (J.-H.K.).
                [* ]E-mail: hsw@ 123456sm.ac.kr . Phone: +82 2 2077 7829. Fax: +82 2 2077 7829 (S.H.).
                Article
                10.1021/acsomega.8b02005
                6289488
                30555992
                627ee7e3-9482-4eec-968e-67bb5944b794
                Copyright © 2018 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 13 August 2018
                : 23 October 2018
                Categories
                Article
                Custom metadata
                ao8b02005
                ao-2018-020059

                Comments

                Comment on this article