11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Melatonin in Salt Stress Responses

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melatonin, an indoleamine widely found in animals and plants, is considered as a candidate phytohormone that affects responses to a variety of biotic and abiotic stresses. In plants, melatonin has a similar action to that of the auxin indole-3-acetic acid (IAA), and IAA and melatonin have the same biosynthetic precursor, tryptophan. Salt stress results in the rapid accumulation of melatonin in plants. Melatonin enhances plant resistance to salt stress in two ways: one is via direct pathways, such as the direct clearance of reactive oxygen species; the other is via an indirect pathway by enhancing antioxidant enzyme activity, photosynthetic efficiency, and metabolite content, and by regulating transcription factors associated with stress. In addition, melatonin can affect the performance of plants by affecting the expression of genes. Interestingly, other precursors and metabolite molecules associated with melatonin can also increase the tolerance of plants to salt stress. This paper explores the mechanisms by which melatonin alleviates salt stress by its actions on antioxidants, photosynthesis, ion regulation, and stress signaling.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Salt tolerance and salinity effects on plants: a review.

          Plants exposed to salt stress undergo changes in their environment. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, and certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones. The ability of plants to detoxify radicals under conditions of salt stress is probably the most critical requirement. Many salt-tolerant species accumulate methylated metabolites, which play crucial dual roles as osmoprotectants and as radical scavengers. Their synthesis is correlated with stress-induced enhancement of photorespiration. In this paper, plant responses to salinity stress are reviewed with emphasis on physiological, biochemical, and molecular mechanisms of salt tolerance. This review may help in interdisciplinary studies to assess the ecological significance of salt stress.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Plant salt tolerance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of ion homeostasis under salt stress.

              When under salt stress, plants maintain a high concentration of K(+) and a low concentration of Na(+) in the cytosol. They do this by regulating the expression and activity of K(+) and Na(+) transporters and of H(+) pumps that generate the driving force for transport. Although salt-stress sensors remain elusive, some of the intermediary signaling components have been identified. Evidence suggests that a protein kinase complex consisting of the myristoylated calcium-binding protein SOS3 and the serine/threonine protein kinase SOS2 is activated by a salt-stress-elicited calcium signal. The protein kinase complex then phosphorylates and activates various ion transporters, such as the plasma membrane Na(+)/H(+) antiporter SOS1.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                08 April 2019
                April 2019
                : 20
                : 7
                : 1735
                Affiliations
                Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China; 18363850217@ 123456163.com (J.L.); m15168849563@ 123456163.com (J.L.); m15953147572@ 123456163.com (T.Z.); 17354609629@ 123456163.com (C.Z.); 18753135561@ 123456163.com (L.L.)
                Author notes
                [* ]Correspondence: chenminrundong@ 123456sdnu.edu.cn ; Tel.: +86-531-8618-0745; Fax: +86-531-8618-0107
                [†]

                These authors contributed equally to this work.

                Article
                ijms-20-01735
                10.3390/ijms20071735
                6479358
                30965607
                624a8c2b-8598-4193-84de-8d4839a26d41
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 February 2019
                : 04 April 2019
                Categories
                Review

                Molecular biology
                plants,salt stress,salt tolerance,melatonin
                Molecular biology
                plants, salt stress, salt tolerance, melatonin

                Comments

                Comment on this article