4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of Droplet Deposition, 28-Homobrassinolide Dosage Efficacy and Working Efficiency of the Unmanned Aerial Vehicle and Knapsack Manual Sprayer in the Maize Field

      , , , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brassinolides (BRs) are naturally-occurring phytohormones, which are essentially important to improve the crop adoptive capacity to various stresses. Spray volume (SV) and agrochemical application methods are associated with chemical deposition and field efficiency. The objective of this study was to compare the possible effects of 28-Homobrassinolide (HBL) dosages 18, 22, and 30 mg a.i. ha−1 for unmanned aerial vehicle (UAV) sprayers (15 L ha−1 and 30 L ha−1) and 22 mg a.i. ha−1 for Knapsack manual sprayers (KMS) (450 L ha−1) at maize silking stage on droplets deposition distribution, photosynthetic parameters, grain filling process and yield. The results showed that the droplet deposition of UAV (15, 30 L ha−1) was 47.04%, 8.89% higher than KMS. However, the UAV sprayer had a poor droplet deposition distribution. HBL significantly increased the photosynthetic parameters, grain filling rate, and yield. A UAV spray volume of 15 L ha−1 with 22 mg a.i. ha−1 significantly increased grains yield by 4.16–5.64%, 7.5–12.09% compared to KMS and CK in both years. Considering the high efficiency of the UAV sprayer and better effects of HBL on final yield, spraying 22~30 mg a.i. ha−1 with UAV spray volume 15 L ha−1 at the silking stage could be a better strategy.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Pesticides, environment, and food safety

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            MEETINGCEREALDEMANDWHILEPROTECTINGNATURALRESOURCES ANDIMPROVINGENVIRONMENTALQUALITY

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Grain filling of cereals under soil drying.

              Monocarpic plants require the initiation of whole-plant senescence to remobilize and transfer assimilates pre-stored in vegetative tissues to grains. Delayed whole-plant senescence caused by either heavy use of nitrogen fertilizer or adoption of lodging-resistant cultivars/hybrids that remain green when the grains are due to ripen results in a low harvest index with much nonstructural carbohydrate (NSC) left in the straw. Usually, water stress during the grain-filling period induces early senescence, reduces photosynthesis, and shortens the grain-filling period; however, it increases the remobilization of NSC from the vegetative tissues to the grain. If mild soil drying is properly controlled during the later grain-filling period in rice (Oryza sativa) and wheat (Triticum aestivum), it can enhance whole-plant senescence, lead to faster and better remobilization of carbon from vegetative tissues to grains, and accelerate the grain-filling rate. In cases where plant senescence is unfavorably delayed, such as by heavy use of nitrogen and the introduction of hybrids with strong heterosis, the gain from the enhanced remobilization and accelerated grain-filling rate can outweigh the loss of reduced photosynthesis and the shortened grain-filling period, leading to an increased grain yield, better harvest index and higher water-use efficiency.
                Bookmark

                Author and article information

                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                February 2022
                February 03 2022
                : 12
                : 2
                : 385
                Article
                10.3390/agronomy12020385
                62419400-1b5f-4c92-a16d-9cc7053b5043
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article