20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Do similar foragers flock together? Nonbreeding foraging behavior and its impact on mixed-species flocking associations in a subtropical region

      1 , 2 , 1 , 2 , 1 , 2
      The Auk
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mixed-species flocks are ubiquitous in forest bird communities, yet the extent to which positive (facilitative) or negative (competitive) interactions structure these assemblages has been a subject of debate. Here, we describe the fine-scale foraging ecology and use network analysis to quantify mixed-species flocking interactions of an insectivorous bird community in hardwood forests of north-central Florida. Our goal was to determine if similarly foraging species are more (facilitation hypothesis) or less (competition hypothesis) likely to associate in flocks, and if foraging ecology can explain intraspecific abundance patterns within flocks. We quantified attack maneuvers, foraging substrate, and foraging microhabitat of all 17 common insectivorous species in these forests and characterized the composition of 92 flocks encountered. Flocking was important in our community; 14 of 17 species joined more than 5% of flocks, and 10 species had flocking propensities of over 0.80. Our results supported both hypothesized mechanisms structuring flock composition. Species had distinct, well-defined foraging niches during the nonbreeding season, but foraging niche overlap among flocking species was greater than expected by chance. Consistent with the facilitation hypothesis, we found that similarly foraging species were significantly more likely to associate in flocks, a result driven by lower association strengths in large-bodied woodpeckers. We found no evidence of assortment by foraging behavior, however, likely because foraging behavior and substrate use showed strong niche partitioning at the fine scale within our community. Intraspecific abundance patterns were significantly linked to foraging substrate use, with live leaf use correlated with high within-flock abundance and relative abundance at study sites. Species that specialized on comparatively less abundant substrates (tree trunks, epiphytes, dead leaves) joined flocks as singletons, showed lower relative abundance, and may exhibit nonbreeding territoriality. Our results highlight the importance of foraging substrate use and mixed-species flocks in structuring the nonbreeding ecology of migratory birds.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Structure of Lizard Communities

            E Pianka (1973)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Constructing, conducting and interpreting animal social network analysis

              Summary Animal social networks are descriptions of social structure which, aside from their intrinsic interest for understanding sociality, can have significant bearing across many fields of biology. Network analysis provides a flexible toolbox for testing a broad range of hypotheses, and for describing the social system of species or populations in a quantitative and comparable manner. However, it requires careful consideration of underlying assumptions, in particular differentiating real from observed networks and controlling for inherent biases that are common in social data. We provide a practical guide for using this framework to analyse animal social systems and test hypotheses. First, we discuss key considerations when defining nodes and edges, and when designing methods for collecting data. We discuss different approaches for inferring social networks from these data and displaying them. We then provide an overview of methods for quantifying properties of nodes and networks, as well as for testing hypotheses concerning network structure and network processes. Finally, we provide information about assessing the power and accuracy of an observed network. Alongside this manuscript, we provide appendices containing background information on common programming routines and worked examples of how to perform network analysis using the r programming language. We conclude by discussing some of the major current challenges in social network analysis and interesting future directions. In particular, we highlight the under‐exploited potential of experimental manipulations on social networks to address research questions.
                Bookmark

                Author and article information

                Journal
                The Auk
                Oxford University Press (OUP)
                0004-8038
                1938-4254
                February 12 2020
                Affiliations
                [1 ]Department of Biology, University of Florida, Gainesville, Florida, USA
                [2 ]Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
                Article
                10.1093/auk/ukz079
                622ccf53-27af-43c1-a431-b28572077605
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article