11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Removal of organic matter from pre-treated domestic sewage in anaerobic biological reactor by a combined system of electrolytic and biological aerobic treatment Translated title: Remoção de matéria orgânica de esgoto doméstico pré-tratado em reator biológico anaeróbio por um sistema combinado de tratamento eletrolítico e biológico aeróbio

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Biological processes are the most widespread methods for wastewater treatment. However, they are limited in their ability to degrade toxic and refractory pollutants, contaminants that electrochemical processes can remove. Therefore, this research explored the possibility of treating sewage by an anaerobic biological process followed by an aerobic system integrated to an electrolytic process. Three sequential batch reactors were operated in an automated way. Each of three reactors represented a process: aerobic biological treatment (BR); electrolytic treatment (ER); and a combination of both, the bio electrolytic reactor (BER). Two phases were ran with different electrodes: (Phase 1) stainless steel and (Phase 2) graphite. The electric current was varied from 0.001 to 0.100 A. COD, TS, SS, turbidity, and the zooplankton community were monitored. The highest organic matter removal efficiencies were 86%, 79% and 87% for BR, ER and BER, respectively. The best weekly BER efficiencies for COD removal were 90% and 98%, with current densities of 0.27 A/m2 (Phase 1) and 0.05 A/m2 (Phase 2). The main conclusions about bio electrolytic process were: (1) it did not achieve organic matter removal high enough to justify its application; (2) inert electrodes are the more indicated; and (3) the zooplankton community was affected by the electric current.

          Translated abstract

          Resumo Os processos biológicos são os métodos mais difundidos para o tratamento de águas residuárias. No entanto, eles têm limitações para degradar poluentes tóxicos e refratários, contaminantes, que os processos eletroquímicos podem remover. Portanto, o objetivo da pesquisa foi verificar a possibilidade de tratamento de esgoto por um processo biológico anaeróbio seguido de um sistema aeróbio integrado a um processo eletrolítico. Três reatores sequenciais em batelada foram operados de maneira automatizada. Cada um dos três reatores representou um processo: tratamento biológico aeróbico (RB); tratamento eletrolítico (RE); e a fusão de ambos, o reator bioeletrolítico (RBE). Duas fases foram executadas com diferentes eletrodos: (Fase 1) de aço inoxidável e (Fase 2) de grafite. A corrente elétrica foi variada de 0.001 a 0.100 A. DQO, ST, SS, turbidez e comunidade zooplanctônica foram monitorados. As maiores eficiências de remoção de matéria orgânica foram 86%, 79% e 87% para BR, RE e RBE, respectivamente. As melhores eficiências semanais de RBE para remoção de DQO foram 90% e 98% com densidades de corrente de 0.27 A/m2 (Fase 1) e 0.05 A/m2 (Fase 2). As principais conclusões sobre o processo bioeletrolítico foram: (1) eles não atingem remoção de matéria orgânica tão alta que justifique sua aplicação; (2) os eletrodos inertes são os mais indicados; e (3) a comunidade zooplanctônica foi afetada pela corrente elétrica.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review.

          Traditional physicochemical and biological techniques, as well as advanced oxidation processes (AOPs), are often inadequate, ineffective, or expensive for industrial water reclamation. Within this context, the electrochemical technologies have found a niche where they can become dominant in the near future, especially for the abatement of biorefractory substances. In this critical review, some of the most promising electrochemical tools for the treatment of wastewater contaminated by organic pollutants are discussed in detail with the following goals: (1) to present the fundamental aspects of the selected processes; (2) to discuss the effect of both the main operating parameters and the reactor design on their performance; (3) to critically evaluate their advantages and disadvantages; and (4) to forecast the prospect of their utilization on an applicable scale by identifying the key points to be further investigated. The review is focused on the direct electrochemical oxidation, the indirect electrochemical oxidation mediated by electrogenerated active chlorine, and the coupling between anodic and cathodic processes. The last part of the review is devoted to the critical assessment of the reactors that can be used to put these technologies into practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water.

            Electrochemical processes have been extensively investigated for the removal of a range of organic and inorganic contaminants. The great majority of these studies were conducted using nitrate-, perchlorate-, sulfate-, and chloride-based electrolyte solutions. In actual treatment applications, organic and inorganic constituents may have substantial effects on the performance of electrochemical treatment. In particular, the outcome of electrochemical oxidation will depend on the concentration of chloride and bromide. Formation of chlorate, perchlorate, chlorinated, and brominated organics may compromise the quality of the treated effluent. A critical review of recent research identifies future opportunities and research needed to overcome major challenges that currently limit the application of electrochemical water treatment systems for industrial and municipal water and wastewater treatment. Given the increasing interest in decentralized wastewater treatment, applications of electrolytic systems for treatment of domestic wastewater, greywater, and source-separated urine are also included. To support future adoption of electrochemical treatment, new approaches are needed to minimize the formation of toxic byproducts and the loss of efficiency caused by mass transfer limitations and undesired side reactions. Prior to realizing these improvements, recognition of the situations where these limitations pose potential health risks is a necessary step in the design and operation of electrochemical treatment systems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Electrochemical oxidation remediation of real wastewater effluents — A review

                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                ambiagua
                Revista Ambiente & Água
                Rev. Ambient. Água
                Instituto de Pesquisas Ambientais em Bacias Hidrográficas (Taubaté, SP, Brazil )
                1980-993X
                2019
                : 14
                : 4
                : e2349
                Affiliations
                [1] Brasília Distrito Federal orgnameUniversidade de Brasília orgdiv1Departamento de Engenharia Civil e Ambiental Brazil ariela_fonseca@ 123456hotmail.com
                Article
                S1980-993X2019000400309
                10.4136/ambi-agua.2349
                61f3a6d1-6400-4d55-94e2-56eb712c15a2

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 26 November 2018
                : 10 June 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 27, Pages: 0
                Product

                SciELO Brazil

                Categories
                Articles

                remoção de matéria orgânica,removal of organic matter.,electrolytic treatment,bioelectrolytic reactor,tratamento eletrolítico.,reator bioeletrolítico

                Comments

                Comment on this article