2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adaptive Optics (rtx1) High-Resolution Imaging of Photoreceptors and Retinal Arteries in Patients with Diabetic Retinopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetic retinopathy (DR) is the leading cause of impaired vision in patients with diabetes mellitus. An adaptive optics retinal camera (rtx1™; Imagine Eyes, France) was used to capture images of cones and retinal arteries from patients with DR.

          Objective

          Cone parameters (density, interphotoreceptor distance, and regularity) and retinal artery parameters (wall thickness, lumen diameter, WLR, and WCSA) were analyzed in 36 patients with nonproliferative DR (NPDR; 22 with mild NPDR and 14 with moderate NPDR) and in 20 healthy volunteers (the control group).

          Results

          Cone density at 2° eccentricities was significantly lower in the DR compared to the control group (19822 ± 4342 cells/mm 2 vs. 24722 ± 3507 cells/mm 2, respectively). Cone density and regularity decreased with increasing severity of DR. The artery walls were significantly thicker in the DR group. The WLR and WCSA differed significantly between the DR and the control groups (WLR 0.339 ± 0.06 vs. 0.254 ± 0.04; WCSA 5567 ± 1140 vs. 4178 ± 944, respectively).

          Conclusions

          Decreased cone regularity and density are seen in patients with mild and moderate NPDR. Abnormalities of retinal arterioles show signs of arteriolar dysfunction in DR. Retinal image analysis with the rtx1 offers a novel noninvasive measurement of early changes in the neural cells and retina vasculature in diabetic eyes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Diabetic retinopathy: seeing beyond glucose-induced microvascular disease.

          Diabetic retinopathy remains a frightening prospect to patients and frustrates physicians. Destruction of damaged retina by photocoagulation remains the primary treatment nearly 50 years after its introduction. The diabetes pandemic requires new approaches to understand the pathophysiology and improve the detection, prevention, and treatment of retinopathy. This perspective considers how the unique anatomy and physiology of the retina may predispose it to the metabolic stresses of diabetes. The roles of neural retinal alterations and impaired retinal insulin action in the pathogenesis of early retinopathy and the mechanisms of vision loss are emphasized. Potential means to overcome limitations of current animal models and diagnostic testing are also presented with the goal of accelerating therapies to manage retinopathy in the face of ongoing diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pathophysiology of Diabetic Retinopathy

            Diabetes is now regarded as an epidemic, with the population of patients expected to rise to 380 million by 2025. Tragically, this will lead to approximately 4 million people around the world losing their sight from diabetic retinopathy, the leading cause of blindness in patients aged 20 to 74 years. The risk of development and progression of diabetic retinopathy is closely associated with the type and duration of diabetes, blood glucose, blood pressure, and possibly lipids. Although landmark cross-sectional studies have confirmed the strong relationship between chronic hyperglycaemia and the development and progression of diabetic retinopathy, the underlying mechanism of how hyperglycaemia causes retinal microvascular damage remains unclear. Continued research worldwide has focussed on understanding the pathogenic mechanisms with the ultimate goal to prevent DR. The aim of this paper is to introduce the multiple interconnecting biochemical pathways that have been proposed and tested as key contributors in the development of DR, namely, increased polyol pathway, activation of protein kinase C (PKC), increased expression of growth factors such as vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), haemodynamic changes, accelerated formation of advanced glycation endproducts (AGEs), oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and subclinical inflammation and capillary occlusion. New pharmacological therapies based on some of these underlying pathogenic mechanisms are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis?

              Retinopathy is a major complication of diabetes mellitus and this condition remains a leading cause of blindness in the working population of developed countries. As diabetic retinopathy progresses a range of neuroglial and microvascular abnormalities develop although it remains unclear how these pathologies relate to each other and their net contribution to retinal damage. From a haemodynamic perspective, evidence suggests that there is an early reduction in retinal perfusion before the onset of diabetic retinopathy followed by a gradual increase in blood flow as the complication progresses. The functional reduction in retinal blood flow observed during early diabetic retinopathy may be additive or synergistic to pro-inflammatory changes, leucostasis and vaso-occlusion and thus be intimately linked to the progressive ischaemic hypoxia and increased blood flow associated with later stages of the disease. In the current review a unifying framework is presented that explains how arteriolar dysfunction and haemodynamic changes may contribute to late stage microvascular pathology and vision loss in human diabetic retinopathy.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi
                2314-6745
                2314-6753
                2019
                17 March 2019
                : 2019
                : 9548324
                Affiliations
                1Medical University of Warsaw, Department of Ophthalmology, Warsaw, Poland
                2SPKSO Ophthalmic Teaching Hospital, Warsaw, Poland
                3Warsaw University of Technology, Faculty of Electronics and Information Technology, Warsaw, Poland
                Author notes

                Academic Editor: Steven F. Abcouwer

                Author information
                http://orcid.org/0000-0002-6946-970X
                Article
                10.1155/2019/9548324
                6441527
                31008115
                61e7948b-785a-42e0-9fbf-02db7b2d6fa7
                Copyright © 2019 Anna Zaleska-Żmijewska et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 October 2018
                : 5 January 2019
                : 30 January 2019
                Categories
                Research Article

                Comments

                Comment on this article