7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LINC00324 in cancer: Regulatory and therapeutic implications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          LINC00324 is a 2082 bp intergenic noncoding RNA. Aberrant expression of LINC00324 was associated with the risk of 11 tumors and was closely associated with clinicopathological features and prognostic levels of 7 tumors. LINC00324 can sponge multiple miRNAs to form complex ceRNA networks, and can also recruit transcription factors and bind RNA-binding protein HuR, thereby regulating the expression of a number of downstream protein-coding genes. LINC00324 is involved in 4 signaling pathways, including the PI3K/AKT signaling pathway, cell cycle regulatory pathway, Notch signaling pathway, and Jak/STAT3 signaling pathway. High expression of LINC00324 was associated with larger tumors, a higher degree of metastasis, a higher TNM stage and clinical stage, and shorter OS. Currently, four downstream genes in the LINC00324 network have targeted drugs. In this review, we summarize the molecular mechanisms and clinical value of LINC00324 in tumors and discuss future directions and challenges for LINC00324 research.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular mechanisms of epithelial-mesenchymal transition.

          The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene regulation by long non-coding RNAs and its biological functions

            Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting the IL-6/JAK/STAT3 signalling axis in cancer

              The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                22 December 2022
                2022
                : 12
                : 1039366
                Affiliations
                [1] 1 Department of Clinical Medicine, Zhejiang University City College School of Medicine , Hangzhou, Zhejiang, China
                [2] 2 College of Pharmacy, Zhejiang University of Technology , Hangzhou, Zhejiang, China
                [3] 3 Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College , Hangzhou, Zhejiang, China
                Author notes

                Edited by: Tao Liu, University of New South Wales, Australia

                Reviewed by: Wenhong Deng, Renmin Hospital of Wuhan University, China; Jozsef Dudas, Innsbruck Medical University, Austria

                *Correspondence: Dayong Zhang, zhangdy@ 123456zucc.edu.cn ; Shiwei Duan, duansw@ 123456zucc.edu.cn

                †These authors share first authorship

                This article was submitted to Cancer Molecular Targets and Therapeutics, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2022.1039366
                9815511
                36620587
                61da1e5c-daaa-417e-8348-f30232207455
                Copyright © 2022 Xia, Shen, Wang, Ke, Yan, Li, Zhang and Duan

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 September 2022
                : 21 November 2022
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 65, Pages: 12, Words: 4022
                Funding
                Funded by: Basic Public Welfare Research Program of Zhejiang Province , doi 10.13039/501100017577;
                Award ID: grant no. LGD22H250002
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                linc00324,cancer,rna-binding protein,cerna,signaling pathway,prognosis
                Oncology & Radiotherapy
                linc00324, cancer, rna-binding protein, cerna, signaling pathway, prognosis

                Comments

                Comment on this article