27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity and mortality. This review article focuses on the epidemiology, cause, mechanisms of injury, current treatment strategies, and future research directions of ICH. Incidence of hemorrhagic stroke has increased worldwide over the past 40 years, with shifts in the cause over time as hypertension management has improved and anticoagulant use has increased. Preclinical and clinical trials have elucidated the underlying ICH cause and mechanisms of injury from ICH including the complex interaction between edema, inflammation, iron-induced injury, and oxidative stress. Several trials have investigated optimal medical and surgical management of ICH without clear improvement in survival and functional outcomes. Ongoing research into novel approaches for ICH management provide hope for reducing the devastating effect of this disease in the future. Areas of promise in ICH therapy include prognostic biomarkers and primary prevention based on disease pathobiology, ultra-early hemostatic therapy, minimally invasive surgery, and perihematomal protection against inflammatory brain injury.

          Related collections

          Most cited references330

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart Disease and Stroke Statistics—2020 Update

            Circulation
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rivaroxaban versus warfarin in nonvalvular atrial fibrillation.

              The use of warfarin reduces the rate of ischemic stroke in patients with atrial fibrillation but requires frequent monitoring and dose adjustment. Rivaroxaban, an oral factor Xa inhibitor, may provide more consistent and predictable anticoagulation than warfarin. In a double-blind trial, we randomly assigned 14,264 patients with nonvalvular atrial fibrillation who were at increased risk for stroke to receive either rivaroxaban (at a daily dose of 20 mg) or dose-adjusted warfarin. The per-protocol, as-treated primary analysis was designed to determine whether rivaroxaban was noninferior to warfarin for the primary end point of stroke or systemic embolism. In the primary analysis, the primary end point occurred in 188 patients in the rivaroxaban group (1.7% per year) and in 241 in the warfarin group (2.2% per year) (hazard ratio in the rivaroxaban group, 0.79; 95% confidence interval [CI], 0.66 to 0.96; P<0.001 for noninferiority). In the intention-to-treat analysis, the primary end point occurred in 269 patients in the rivaroxaban group (2.1% per year) and in 306 patients in the warfarin group (2.4% per year) (hazard ratio, 0.88; 95% CI, 0.74 to 1.03; P<0.001 for noninferiority; P=0.12 for superiority). Major and nonmajor clinically relevant bleeding occurred in 1475 patients in the rivaroxaban group (14.9% per year) and in 1449 in the warfarin group (14.5% per year) (hazard ratio, 1.03; 95% CI, 0.96 to 1.11; P=0.44), with significant reductions in intracranial hemorrhage (0.5% vs. 0.7%, P=0.02) and fatal bleeding (0.2% vs. 0.5%, P=0.003) in the rivaroxaban group. In patients with atrial fibrillation, rivaroxaban was noninferior to warfarin for the prevention of stroke or systemic embolism. There was no significant between-group difference in the risk of major bleeding, although intracranial and fatal bleeding occurred less frequently in the rivaroxaban group. (Funded by Johnson & Johnson and Bayer; ROCKET AF ClinicalTrials.gov number, NCT00403767.).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Circulation Research
                Circ Res
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                April 15 2022
                April 15 2022
                : 130
                : 8
                : 1204-1229
                Affiliations
                [1 ]Department of Neurology, Yale University School of Medicine, New Haven, CT (J.M.-B., L.H.S.).
                [2 ]Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL (R.G., S.P., A.S., S.R., I.A.A.).
                Article
                10.1161/CIRCRESAHA.121.319949
                35420918
                61b388e3-2b98-4d2c-b017-c1ec83441e67
                © 2022
                History

                Comments

                Comment on this article