4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Concentrations, Spatial Distributions, and Sources of Heavy Metals in Surface Soils of the Coal Mining City Wuhai, China

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Various studies have shown that soils surrounding mining areas are seriously polluted by heavy metals. In this study, 58 topsoil samples were systematically collected throughout the coal mining city Wuhai, located within the Inner Mongolia Autonomous Region of China. The concentrations of As, Hg, Cr, Ni, Cu, Zn, Cd, and Pb in these samples were measured and statistically analyzed. The mean concentrations of all heavy metals were lower than their Grade I values defined by the Chinese Soil Quality Standard. However, the mean concentrations of individual heavy metals in many samples exceeded their background values. The spatial distribution of heavy metals was analyzed by the ordinary kriging interpolation method. The positive matrix factorization model was used to ascertain contamination sources of the eight heavy metals and to apportion the contribution of each source. The most severely polluted area was the Wuhushan mine site in the Wuda district of Wuhai. Our results showed that coal mining strongly affected heavy metal contamination of the local soils. Results of source apportionment indicated that contributions from industrial activities, atmospheric deposition, agricultural activities, and natural sources were 31.3%, 26.3%, 21.9%, and 20.5%, respectively. This clearly demonstrates that anthropogenic activities have markedly higher contribution rates than natural sources to heavy metal pollution in soils in this area.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

            Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China.

              In this study, we investigated the pollution degree and spatial distribution of heavy metals and determined their sources in topsoil in a typical coal mine city, Lianyuan, Hunan Province, China. We collected 6078 soil surface samples in different land use types. And the concentrations of Zn, Cd, Cu, Hg, Pb, Sb, As, Mo, V, Mn, Fe and Cr were measured. The average contents of all heavy metals were lower than their corresponding Grade II values of Chinese Soil Quality Standard with the exception of Hg. However, average contents of twelve heavy metals, except for Mn, exceeded their background level in soils in Hunan Province. Based on one-way analysis of variance (ANOVA), the contents of Cu, Zn, Cd, Pb, Hg, Mo and V were related to the anthropogenic source and there were statistically significant differences in their concentrations among different land use patterns. The spatial variation of heavy metal was visualized by GIS. The PMF model was used to ascertain contamination sources of twelve heavy metals and apportion their source contributions in Lianyuan soils. The results showed that the source contributions of the natural source, atmospheric deposition, industrial activities and agricultural activities accounted for 33.6%, 26.05%, 23.44% and 16.91%, respectively.
                Bookmark

                Author and article information

                Journal
                Journal of Chemistry
                Journal of Chemistry
                Hindawi Limited
                2090-9063
                2090-9071
                July 22 2020
                July 22 2020
                : 2020
                : 1-10
                Affiliations
                [1 ]School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
                [2 ]Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
                Article
                10.1155/2020/4705954
                61aaec94-ffd6-4b42-8ec5-147bf8a9fef3
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article