4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of hindgut acidosis on metabolism, inflammation, and production in dairy cows consuming a standard lactation diet

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences.

          During subacute ruminal acidosis (SARA) rumen pH is depressed for several hours per day due to accumulation of volatile fatty acids and insufficient rumen buffering. Surveys suggested an incidence of SARA of between 19% and 26% in early and mid-lactation dairy cows. Causes of SARA include feeding excessive amounts of non-structural carbohydrates and highly fermentable forages, and insufficient dietary coarse fiber. Consequences of SARA include feed intake depression, reduced fiber digestion, milk fat depression, diarrhea, laminitis, liver abscesses, increased production of bacterial endotoxin and inflammation characterized by increases in acute phase proteins. The increase in endotoxin is similar among methods for SARA induction, but depends on the diet fed before induction. Increases in acute phase proteins vary among methods of SARA induction, even when the methods result in similar rumen pH depressions. This suggests that the inflammatory response might not be solely due to bacterial endotoxin in the rumen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Utilization of nutrients by isolated epithelial cells of the rat colon.

            Isolated suspensions of colonocytes from the rat were used to assess utilization, interaction, and fate of metabolic substrates normally obtained from colonic bacteria (acetate, propionate, butyrate) or derived from the blood circulation to the colonic mucosa (D-glucose, acetoacetate, L-glutamine). The short-chain fatty acid n-butyrate (10 mM), on its own, accounted for 86% of the total oxygen consumption and suppressed oxidation of endogenous fuel by 82%. Ths value was not altered by the addition of acetoacetate (5 mM), of L-glutamine (5 mM), or of D-glucose (10 mM). Activation of short-chain fatty acids by colonocytes proceeded in the order of butyrate greater than acetate greater than propionate. D-Glucose on its own accounted for 30% of the oxygen consumption by colonocytes and hardly suppressed utilization of endogenous fuels. Colonocytes utilized ketone bodies (acetoacetate) and produced them (acetoacetate and beta-hydroxybutyrate) from short-chain fatty acids. Considering the interaction of substrates, isolated colonic epithelial cells utilized respiratory fuels in the preferential order of butyrate greater than acetoacetate greater than glutamine greater than glucose. The high rate of CO2 production from butyrate should be a worthwhile means of examining the functional activity of the colonic mucosa clinically and in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation.

              The effects of a grain-based subacute ruminal acidosis (SARA) challenge on translocation of lipopolysaccharide (LPS) into the peripheral circulation, acute phase proteins in blood and milk, feed intake, milk production and composition, and blood metabolites were determined in 8 lactating Holstein cows. Between wk 1 and 5 of 2 successive 6-wk periods, cows received a total mixed ration ad libitum with a forage to concentrate (F:C) ratio of 50:50. In wk 6 of both periods, the SARA challenge was conducted by replacing 21% of the dry matter of the total mixed ration with pellets containing 50% wheat and 50% barley. Rumen pH was monitored continuously using indwelling pH probes in 4 rumen cannulated cows. Rumen fluid samples were collected 15 min before feed delivery and at 2, 4, 6, 12, 14, 16, 18, and 24 h after feed delivery for 2 d during wk 5 (control) and wk 6 (SARA). Peripheral blood samples were collected using jugular catheters 15 min before feeding and at 6 and 12 h after feeding at the same days of the rumen fluid collections. The SARA challenge significantly reduced average daily pH from 6.17 to 5.97 and increased the duration of rumen pH below pH 5.6 from 118 to 279 min/d. The challenge reduced dry matter intake (16.5 vs. 19 kg/d), milk yield (28.3 vs. 31.6 kg/d), and milk fat (2.93 vs. 3.30%, 0.85 vs. 0.97 kg/d), and tended to increase milk protein percentage (3.42 vs. 3.29%), without affecting milk protein yield (1.00 vs. 0.98 kg/d). The challenge also increased the concentration of free LPS in rumen fluid from 28,184 to 107,152 endotoxin units (EU)/mL. This was accompanied by an increase in LPS in peripheral blood plasma (0.52 vs. <0.05 EU/mL) with a peak at 12 h after feeding (0.81 EU/mL). Concentrations of the acute phase proteins serum amyloid A, haptoglobin, and LPS-binding protein (LBP) in peripheral blood as well as LBP concentration in milk increased (438.5 vs. 167.4, 475.6 vs. 0, 53.1 vs. 18.2, and 6.94 vs. 3.02 microg/mL, respectively) during SARA. The increase in LBP in combination with the increase in LPS in peripheral blood provides additional evidence of translocation of LPS. Results suggest that the grain-based SARA challenge resulted in translocation of LPS into the peripheral circulation, and that this translocation triggered a systemic inflammatory response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Dairy Science
                Journal of Dairy Science
                American Dairy Science Association
                00220302
                February 2023
                February 2023
                : 106
                : 2
                : 1429-1440
                Article
                10.3168/jds.2022-22303
                36460494
                61a1d993-d7d1-41f3-920a-c99178dcd994
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article