10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-center evaluation of dose conformity in stereotactic body radiotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and purpose

          Stereotactic body radiotherapy (SBRT) is an emerging technique for treating oligometastases, but limited data is available on what plan quality is achievable for a range of modalities and clinical sites.

          Methods

          SBRT plans for lung, spine, bone, adrenal, liver and node sites from 17 participating centers were reviewed. Centers used various delivery techniques including static and rotational intensity-modulation and multiple non-coplanar beams. Plans were split into lung and other body sites and evaluated with different plan quality metrics, including two which are independent of target coverage; “prescription dose spillage” (PDS) and “modified gradient index” (MGI). These were compared to constraints from the ROSEL and RTOG 0813 clinical trials.

          Results

          Planning target volume (PTV) coverage was compromised (PTV V100% < 90%) in 29% of patient plans in order to meet organ-at-risk (OAR) tolerances, supporting the use of plan quality metrics which are independent of target coverage. Both lung (n = 48) and other body (n = 99) site PDS values agreed well with ROSEL constraints on dose spillage, but RTOG 0813 values were too high to detect sub-optimal plans. MGI values for lung plans were mis-matched to both sets of previous constraints, with ROSEL values too high and RTOG 0813 values too low. MGI values were lower for other body plans as expected, though this was only statistically significant for PTV volumes <20 cm 3.

          Conclusions

          Updated guidance for lung and other body site SBRT plan quality using the PDS and MGI metrics is presented.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate.

          This article presents a method of quantitative assessment of the degree of conformality and its designation by a single numerical value. A conformation number is introduced to evaluate objectively the degree of conformality. A comparison is made between the conformation number as found for external beam treatment plans and ultrasonically guided 125I seed implants for localized prostate cancer. The conformation number in case of a planning target volume irradiated with two opposed open beams, three open beams, and three beams with customized blocks amounted to 0.17, 0.39, and 0.65, respectively. The conformation number as found for ultrasonically guided permanent prostate implants using 125I seeds averaged 0.72. The conformation number is a convenient instrument for indicating the degree of conformality by a single numerical value. Treatments with a conformation number greater than 0.60 might be termed conformal radiotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple scoring ratio to index the conformity of radiosurgical treatment plans

            ✓ A conformity index is a measure of how well the volume of a radiosurgical dose distribution conforms to the size and shape of a target volume. Because the success of radiosurgery is related to the extremely conformal irradiation of the target, an accurate method for describing this parameter is important. Existing conformity ratios and indices used in radiosurgery are reviewed and criticized. It will be demonstrated that previously proposed measurements of conformity can, under certain conditions, give false perfect scores. A new conformity index is derived that gives an objective score of conformity for a treatment plan and gives no false scores. An analysis of five different treatment plans is made using both the existing scoring methods and the new conformity index.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple dose gradient measurement tool to complement the conformity index.

              A dose gradient index (GI) is proposed that can be used to compare treatment plans of equal conformity. The steep dose gradient outside the radiosurgical target is one of the factors that makes radiosurgery possible. It therefore makes sense to measure this variable and to use it to compare rival plans, explore optimal prescription isodoses, or compare treatment modalities. The GI is defined as the ratio of the volume of half the prescription isodose to the volume of the prescription isodose. For a plan normalized to the 50% isodose line, it is the ratio of the 25% isodose volume to that of the 50% isodose volume. The GI will differentiate between plans of similar conformity, but with different dose gradients, for example, where isocenters have been inappropriately centered on the edge of the target volume. In a retrospective series of 50 dose plans for the treatment of vestibular schwannoma, the optimal prescription isodose was assessed. A mean value of 40% (median 38%, range 30-61%) was calculated, not 50% as might be anticipated. The GI can show which of these prescription isodoses will give the steepest dose falloff outside the target. When planning a multiisocenter treatment, there may be a temptation to place some isocenters on the edge of the target. This has the apparent advantage of producing a plan of good conformity and a predictable prescription isodose; however, it risks creating a plan that has a low dose gradient outside the target. The quality of this dose gradient is quantified by the GI.
                Bookmark

                Author and article information

                Contributors
                Journal
                Phys Imaging Radiat Oncol
                Phys Imaging Radiat Oncol
                Physics and Imaging in Radiation Oncology
                Elsevier
                2405-6316
                28 August 2019
                July 2019
                28 August 2019
                : 11
                : 41-46
                Affiliations
                [a ]National Radiotherapy Trials QA Group, Mount Vernon Hospital, London HA6 2RN, UK
                [b ]Barts Health NHS Trust, London EC1A 7BE, UK
                [c ]Worcestershire Oncology Centre, Worcester WR5 1DD, UK
                Author notes
                [* ]Corresponding author. davideaton@ 123456nhs.net
                Article
                S2405-6316(19)30040-5
                10.1016/j.phro.2019.08.002
                7807546
                6147db90-3cad-4fbe-847e-ca9b3789a130
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 26 July 2019
                : 14 August 2019
                : 15 August 2019
                Categories
                Original Research Article

                sbrt,planning,metric,quality,lung,oligometastases,trial
                sbrt, planning, metric, quality, lung, oligometastases, trial

                Comments

                Comment on this article