19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The ERK Pathway: Molecular Mechanisms and Treatment of Depression

      ,
      Molecular Neurobiology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Major depressive disorder is a chronic debilitating mental illness. Its pathophysiology at cellular and molecular levels is incompletely understood. Increasing evidence supports a pivotal role of the mitogen-activated protein kinase (MAPK), in particular the extracellular signal-regulated kinase (ERK) subclass of MAPKs, in the pathogenesis, symptomatology, and treatment of depression. In humans and various chronic animal models of depression, the ERK signaling was significantly downregulated in the prefrontal cortex and hippocampus, two core areas implicated in depression. Inhibiting the ERK pathway in these areas caused depression-like behavior. A variety of antidepressants produced their behavioral effects in part via normalizing the downregulated ERK activity. In addition to ERK, the brain-derived neurotrophic factor (BDNF), an immediate upstream regulator of ERK, the cAMP response element-binding protein (CREB), a transcription factor downstream to ERK, and the MAPK phosphatase (MKP) are equally vulnerable to depression. While BDNF and CREB were reduced in their activity in the prefrontal cortex and hippocampus of depressed animals, MKP activity was enhanced in parallel. Chronic antidepressant treatment readily reversed these neurochemical changes. Thus, ERK signaling in the depression-implicated brain regions was disrupted during the development of depression, which contributes to the long-lasting and transcription-dependent neuroadaptations critical for enduring depression-like behavior and the therapeutic effect of antidepressants.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: not found
          • Article: not found

          MAPK cascade signalling and synaptic plasticity.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication.

            The cAMP signaling pathway, and its downstream neurotrophic factor BDNF, are major targets of antidepressant medications. Abnormalities in this pathway have previously been reported in postmortem brain of subjects with mood disorders. This study was designed to test whether the diagnosis of a mood disorder, or treatment with an antidepressant or mood stabilizer was associated with changes in hippocampal BDNF in postmortem brain. Frozen postmortem anterior hippocampus sections were obtained from the Stanley Foundation Neuropathology Consortium. Tissue from subjects with major depression, bipolar disorder, schizophrenia and nonpsychiatric control subjects were stained for BDNF using immunohistochemistry. Increased BDNF expression was found in dentate gyrus, hilus and supragranular regions in subjects treated with antidepressant medications at the time of death, compared with antidepressant-untreated subjects. Furthermore, there was a trend toward increased BDNF expression in hilar and supragranular regions in depressed subjects treated with antidepressants, compared with the subjects not on these medications at the time of death. These findings are consistent with recent studies measuring CREB levels in this same subject sample, and support current animal and cellular models of antidepressant function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects.

              Suicide is a major public health concern. Although authors of many studies have examined the neurobiological aspects of suicide, the molecular mechanisms associated with suicidal behavior remain unclear. Brain-derived neurotrophic factor (BDNF), one of the most important neurotrophins, after binding with and activating receptor tyrosine kinase B (trk B), is directly involved in many physiological functions in the brain, including cell survival and synaptic plasticity. The present study was performed to examine whether the expression of BDNF and/or trk B isoforms was altered in postmortem brain in subjects who commit suicide (hereafter referred to as suicide subjects) and whether these alterations were associated with specific psychopathologic conditions. These studies were performed in prefrontal cortex in Brodmann area 9 and hippocampus obtained in 27 suicide subjects and 21 nonpsychiatric control subjects. Levels of messenger RNA and protein levels of BDNF and trk B were determined with competitive reverse transcriptase-polymerase chain reaction and Western blot technique, respectively. The level of neuron-specific enolase messenger RNA as a neuronal marker was also determined in these brain areas. Messenger RNA levels of BDNF and trk B were significantly reduced, independently and as a ratio to neuron-specific enolase, in both prefrontal cortex and hippocampus in suicide subjects, as compared with those in control subjects. These reductions were associated with significant decreases in the protein levels of BDNF and of full-length trk B but not trk B's truncated isoform. These changes were present in all suicide subjects regardless of psychiatric diagnosis and were unrelated to postmortem interval, age, sex, or pH of the brain. Given the importance of BDNF in mediating physiological functions, including cell survival and synaptic plasticity, our findings of reduced expression of BDNF and trk B in postmortem brain in suicide subjects suggest that these molecules may play an important role in the pathophysiological aspects of suicidal behavior.
                Bookmark

                Author and article information

                Journal
                Molecular Neurobiology
                Mol Neurobiol
                Springer Science and Business Media LLC
                0893-7648
                1559-1182
                September 2019
                February 9 2019
                September 2019
                : 56
                : 9
                : 6197-6205
                Article
                10.1007/s12035-019-1524-3
                6684449
                30737641
                612cf001-cc64-42bf-b48b-72400c1b6ca3
                © 2019

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article