Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls.

      1 ,
      Bioresource technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellulose nanofibers were extracted from the agricultural residues, wheat straw and soy hulls, by a chemi-mechanical technique to examine their potential for use as reinforcement fibers in biocomposite applications. The structure of the cellulose nanofibers was investigated by transmission electron microscopy. The wheat straw nanofibers were determined to have diameters in the range of 10-80 nm and lengths of a few thousand nanometers. By comparison, the soy hull nanofibers had diameter 20-120 nm and shorter lengths than the wheat straw nanofibers. Chemical characterization of the wheat straw nanofibers confirmed that the cellulose content was increased from 43% to 84% by an applied alkali and acid treatment. FT-IR spectroscopic analysis of both fibers demonstrated that this chemical treatment also led to partial removal of hemicelluloses and lignin from the structure of the fibers. PXRD results revealed that this resulted in improved crystallinity of the fibers. After mechanical treatments of cryocrushing, disintegration and defibrillation, the thermal properties of the nanofibers were studied by the TGA technique and found to increase dramatically. The degradation temperature of both nanofiber types reached beyond 290 degrees C. This value is reasonably promising for the use of these nanofibers in reinforced-polymer manufacturing.

          Related collections

          Author and article information

          Journal
          Bioresour Technol
          Bioresource technology
          Elsevier BV
          0960-8524
          0960-8524
          Apr 2008
          : 99
          : 6
          Affiliations
          [1 ] Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, Toronto, Canada. ayse.alemdar@utoronto.ca
          Article
          S0960-8524(07)00371-9
          10.1016/j.biortech.2007.04.029
          17566731
          61182eac-115c-4221-ab4e-667a008e09c1
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content320

          Cited by351