0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the stability of blowup solutions to the complex Ginzburg-Landau equation in R^d

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Building upon the idea in \cite{HNWarXiv24}, we establish stability of the type-I blowup with log correction for the complex Ginzburg-Landau equation. In the amplitude-phase representation, a generalized dynamic rescaling formulation is introduced, with modulation parameters capturing the spatial translation and rotation symmetries of the equation and novel additional modulation parameters perturbing the scaling symmetry. This new formulation provides enough degrees of freedom to impose normalization conditions on the rescaled solution, completely eliminating the unstable and neutrally stable modes of the linearized operator around the blowup profile. It enables us to establish the full stability of the blowup by enforcing vanishing conditions via the choice of normalization and using weighted energy estimates, without relying on a topological argument or a spectrum analysis. The log correction for the blowup rate is captured by the energy estimates and refined estimates of the modulation parameters.

          Related collections

          Author and article information

          Journal
          22 July 2024
          Article
          2407.15812
          60deafc4-259a-4d92-9544-83f27f40d541

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          35Q56
          38 pages
          math.AP

          Analysis
          Analysis

          Comments

          Comment on this article