16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying a brain network for musical rhythm: A functional neuroimaging meta-analysis and systematic review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: not found
          • Article: not found

          Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference.

            Many image enhancement and thresholding techniques make use of spatial neighbourhood information to boost belief in extended areas of signal. The most common such approach in neuroimaging is cluster-based thresholding, which is often more sensitive than voxel-wise thresholding. However, a limitation is the need to define the initial cluster-forming threshold. This threshold is arbitrary, and yet its exact choice can have a large impact on the results, particularly at the lower (e.g., t, z < 4) cluster-forming thresholds frequently used. Furthermore, the amount of spatial pre-smoothing is also arbitrary (given that the expected signal extent is very rarely known in advance of the analysis). In the light of such problems, we propose a new method which attempts to keep the sensitivity benefits of cluster-based thresholding (and indeed the general concept of "clusters" of signal), while avoiding (or at least minimising) these problems. The method takes a raw statistic image and produces an output image in which the voxel-wise values represent the amount of cluster-like local spatial support. The method is thus referred to as "threshold-free cluster enhancement" (TFCE). We present the TFCE approach and discuss in detail ROC-based optimisation and comparisons with cluster-based and voxel-based thresholding. We find that TFCE gives generally better sensitivity than other methods over a wide range of test signal shapes and SNR values. We also show an example on a real imaging dataset, suggesting that TFCE does indeed provide not just improved sensitivity, but richer and more interpretable output than cluster-based thresholding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cortical organization of speech processing.

              Despite decades of research, the functional neuroanatomy of speech processing has been difficult to characterize. A major impediment to progress may have been the failure to consider task effects when mapping speech-related processing systems. We outline a dual-stream model of speech processing that remedies this situation. In this model, a ventral stream processes speech signals for comprehension, and a dorsal stream maps acoustic speech signals to frontal lobe articulatory networks. The model assumes that the ventral stream is largely bilaterally organized--although there are important computational differences between the left- and right-hemisphere systems--and that the dorsal stream is strongly left-hemisphere dominant.
                Bookmark

                Author and article information

                Journal
                Neuroscience & Biobehavioral Reviews
                Neuroscience & Biobehavioral Reviews
                Elsevier BV
                01497634
                May 2022
                May 2022
                : 136
                : 104588
                Article
                10.1016/j.neubiorev.2022.104588
                35259422
                60dddde5-4224-4413-9941-a1b1bd9081ed
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,960

                Cited by25

                Most referenced authors1,557