1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep learning for processing and analysis of remote sensing big data: a technical review

      1 , 2 , 1
      Big Earth Data
      Informa UK Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Deep Residual Learning for Image Recognition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long Short-Term Memory

              Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Big Earth Data
                Big Earth Data
                Informa UK Limited
                2096-4471
                2574-5417
                October 02 2022
                August 30 2021
                October 02 2022
                : 6
                : 4
                : 527-560
                Affiliations
                [1 ]State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
                [2 ]College of Hydrology and Water Resources, Hohai University, Nanjing, China
                Article
                10.1080/20964471.2021.1964879
                60d629d2-dc9d-44c0-9f43-c8df6cc2d897
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article