6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of the Hepatitis B Virus Large Surface Protein with Viral Infectivity and Endoplasmic Reticulum Stress-mediated Liver Carcinogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatitis B is the most prevalent viral hepatitis worldwide, affecting approximately one-third of the world’s population. Among HBV factors, the surface protein is the most sensitive biomarker for viral infection, given that it is expressed at high levels in all viral infection phases. The large HBV surface protein (LHBs) contains the integral pre-S1 domain, which binds to the HBV receptor sodium taurocholate co transporting polypeptide on the hepatocyte to facilitate viral entry. The accumulation of viral LHBs and its prevalent pre-S mutants in chronic HBV carriers triggers a sustained endoplasmic reticulum (ER) overload response, leading to ER stress-mediated cell proliferation, metabolic switching and genomic instability, which are associated with pro-oncogenic effects. Ground glass hepatocytes identified in HBV-related hepatocellular carcinoma (HCC) patients harbor pre-S deletion variants that largely accumulate in the ER lumen due to mutation-induced protein misfolding and are associated with increased risks of cancer recurrence and metastasis. Moreover, in contrast to the major HBs, which is decreased in tumors to a greater extent than it is in peritumorous regions, LHBs is continuously expressed during tumorigenesis, indicating that LHBs serves as a promising biomarker for HCC in people with CHB. Continuing efforts to delineate the molecular mechanisms by which LHBs regulates pathological changes in CHB patients are important for establishing a correlation between LHBs biomarkers and HCC development.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus

          Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157–165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV. DOI: http://dx.doi.org/10.7554/eLife.00049.001
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Unfolded Protein Response and Cell Fate Control.

            The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bile acid metabolism and signaling.

              Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. © 2013 American Physiological Society.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                08 September 2020
                September 2020
                : 9
                : 9
                : 2052
                Affiliations
                [1 ]Laboratory of Clinical Biochemistry, Department of Pathology, National Cheng Kung University Hospital, 138 Sheng Li Rd, Tainan 704, Taiwan; i34911060@ 123456gs.ncku.edu.tw
                [2 ]Department of Biotechnology, Chia Nan University of Pharmacy & Science, 60 Sec. 1, Erren Rd, Rende Dist., Tainan 717, Taiwan; hung86@ 123456mail.cnu.edu.tw
                [3 ]Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 701, Taiwan
                Author notes
                [* ]Correspondence: whuang@ 123456mail.ncku.edu.tw ; Tel.: +886-6-2353535
                Author information
                https://orcid.org/0000-0002-2139-3099
                Article
                cells-09-02052
                10.3390/cells9092052
                7563867
                32911838
                60c339d5-f604-469a-8a7c-89ff4e1af48f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 August 2020
                : 07 September 2020
                Categories
                Review

                hepatitis b virus,large surface protein,endoplasmic reticulum,viral entry,sodium taurocholate cotransporting polypeptide,ground glass hepatocyte,pre-s deletion,hepatocellular carcinoma

                Comments

                Comment on this article