37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d4192078e232">In plants, three major classes of pigments are generally responsible for colors seen in fruits and flowers: anthocyanins, carotenoids, and betalains. Betalains are red-violet and yellow plant pigments that have been reported to possess strong antioxidant and health-promoting properties, including anticancer, antiinflammatory, and antidiabetic activity. Here, heterologous betalain production was achieved for the first time in three major food crops: tomato, potato, and eggplant. Remarkably, betalain production in tobacco resulted in significantly enhanced resistance toward gray mold ( <i>Botrytis cinerea</i>), a plant pathogen responsible for major crop losses. Considering the significant characteristics of these molecules, heterologous betalain production now offers exciting opportunities for creating new value for consumers, producers, and suppliers of food crops and ornamental plants. </p><p class="first" id="d4192078e238">Betalains are tyrosine-derived red-violet and yellow plant pigments known for their antioxidant activity, health-promoting properties, and wide use as food colorants and dietary supplements. By coexpressing three genes of the recently elucidated betalain biosynthetic pathway, we demonstrate the heterologous production of these pigments in a variety of plants, including three major food crops: tomato, potato, and eggplant, and the economically important ornamental petunia. Combinatorial expression of betalain-related genes also allowed the engineering of tobacco plants and cell cultures to produce a palette of unique colors. Furthermore, betalain-producing tobacco plants exhibited significantly increased resistance toward gray mold ( <i>Botrytis cinerea</i>), a pathogen responsible for major losses in agricultural produce. Heterologous production of betalains is thus anticipated to enable biofortification of essential foods, development of new ornamental varieties, and innovative sources for commercial betalain production, as well as utilization of these pigments in crop protection. </p>

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Visualization of an Oxygen-deficient Bottom Water Circulation in Osaka Bay, Japan

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.

            Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers "virulent" sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Functional properties of anthocyanins and betalains in plants, food, and in human nutrition

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 22 2017
                August 22 2017
                : 114
                : 34
                : 9062-9067
                Article
                10.1073/pnas.1707176114
                5576821
                28760998
                60bf3bb0-f919-44cb-950d-350d2a62e4ac
                © 2017
                History

                Comments

                Comment on this article