7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sludge-derived biochar as efficient persulfate activators: Sulfurization-induced electronic structure modulation and disparate nonradical mechanisms

      , , , , , ,
      Applied Catalysis B: Environmental
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Multiwfn: a multifunctional wavefunction analyzer.

          Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts.

            Nitrogen (N)-doped carbon materials exhibit high electrocatalytic activity for the oxygen reduction reaction (ORR), which is essential for several renewable energy systems. However, the ORR active site (or sites) is unclear, which retards further developments of high-performance catalysts. Here, we characterized the ORR active site by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species. The ORR active site is created by pyridinic N. Carbon dioxide adsorption experiments indicated that pyridinic N also creates Lewis basic sites. The specific activities per pyridinic N in the HOPG model catalysts are comparable with those of N-doped graphene powder catalysts. Thus, the ORR active sites in N-doped carbon materials are carbon atoms with Lewis basicity next to pyridinic N.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation and Detection of Reactive Oxygen Species in Photocatalysis.

              The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (•O2-), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2. However, besides TiO2 some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed •OH could be regarded as trapped holes, which are involved in a rapid adsorption-desorption equilibrium at the TiO2-solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas •OH in solution would exert the reactivity mainly for nonadsorbed reactants. The most probable routes of generating intrinsic ROS at the surfaces of two polymorphs of TiO2, anatase and rutile, were discussed along with some plausible rational reaction processes. In addition to the four major ROS, three ROS, that is organic peroxides, ozone, and nitric oxide, which are less common in photocatalysis are also briefly reviewed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Applied Catalysis B: Environmental
                Applied Catalysis B: Environmental
                Elsevier BV
                09263373
                December 2020
                December 2020
                : 279
                : 119361
                Article
                10.1016/j.apcatb.2020.119361
                60a74c25-3411-45e8-a0c6-e05ae83dc83b
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article