2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Clathrin-Related Protein, SCD2/RRP1, Participates in Abscisic Acid Signaling in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abscisic acid (ABA) plays important roles in many aspects of plant growth and development, and responses to diverse stresses. Although much progress has been made in understanding the molecular mechanisms of ABA homoeostasis and signaling, the mechanism by which plant cells integrate ABA trafficking and signaling to regulate plant developmental processes is poorly understood. In this study, we used Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE 2/ RIPENING-REGULATED PROTEIN 1 ( SCD2/ RRP1) mutants and overexpression plants, in combination with transcriptome and protein-interaction assays, to investigate SCD2/RRP1 involvement in the integration of ABA trafficking and signaling in seed germination and seedling growth. Manipulation of SCD2/RRP1 expression affected ABA sensitivity in seed germination and seedling growth, as well as transcription of several ABA transporter genes and ABA content. RNA-sequencing analysis of Arabidopsis transgenic mutants suggested that SCD2/RRP1 was associated with ABA signaling via a type 2C protein phosphatase (PP2C) protein. The N- and C-terminal regions of SCD2/RRP1 separately interacted with both PYRABACTIN RESISTANCE 1 (PYR1) and ABA INSENSITIVE 1 (ABI1) on the plasma membrane, and SCD2/RRP1 acted genetically upstream of ABI1. Interestingly, ABA inhibited the interaction of SCD2/RRP1 with ABI1, but did not affect the interaction of SCD2/RRP1 with PYR1. These results suggested that in Arabidopsis SCD2/RRP1participates in early seed development and growth potentially through clathrin-mediated endocytosis- and clathrin-coated vesicle-mediated ABA trafficking and signaling. These findings provide insight into the mechanism by which cells regulate plant developmental processes through ABA.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.

          Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulators of PP2C phosphatase activity function as abscisic acid sensors.

            The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abscisic acid biosynthesis and catabolism.

              The level of abscisic acid (ABA) in any particular tissue in a plant is determined by the rate of biosynthesis and catabolism of the hormone. Therefore, identifying all the genes involved in the metabolism is essential for a complete understanding of how this hormone directs plant growth and development. To date, almost all the biosynthetic genes have been identified through the isolation of auxotrophic mutants. On the other hand, among several ABA catabolic pathways, current genomic approaches revealed that Arabidopsis CYP707A genes encode ABA 8'-hydroxylases, which catalyze the first committed step in the predominant ABA catabolic pathway. Identification of ABA metabolic genes has revealed that multiple metabolic steps are differentially regulated to fine-tune the ABA level at both transcriptional and post-transcriptional levels. Furthermore, recent ongoing studies have given new insights into the regulation and site of ABA metabolism in relation to its physiological roles.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                18 June 2020
                2020
                : 11
                : 892
                Affiliations
                [1] 1Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture , Beijing, China
                [2] 2Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences , Beijing, China
                Author notes

                Edited by: Kendal Hirschi, Baylor College of Medicine, United States

                Reviewed by: Toshiro Shigaki, The University of Tokyo, Japan; Wayne Versaw, Texas A&M University, United States

                *Correspondence: Yuanyue Shen, sfmn@ 123456tom.com

                This article was submitted to Plant Traffic and Transport, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.00892
                7314967
                32625229
                6094fe4e-3166-45cb-9939-ae41135e0427
                Copyright © 2020 Hou and Shen

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 March 2020
                : 01 June 2020
                Page count
                Figures: 9, Tables: 1, Equations: 0, References: 47, Pages: 14, Words: 6626
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                arabidopsis,seed germination,seedling growth,abscisic acid,scd2/rrp1,pyr1,abi1
                Plant science & Botany
                arabidopsis, seed germination, seedling growth, abscisic acid, scd2/rrp1, pyr1, abi1

                Comments

                Comment on this article