8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Two SERK Receptor-Like Kinases Interact with EMS1 to Control Anther Cell Fate Determination.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell signaling pathways mediated by leucine-rich repeat receptor-like kinases (LRR-RLKs) are essential for plant growth, development, and defense. The EMS1 (EXCESS MICROSPOROCYTES1) LRR-RLK and its small protein ligand TPD1 (TAPETUM DETERMINANT1) play a fundamental role in somatic and reproductive cell differentiation during early anther development in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether other cell surface molecules serve as coregulators of EMS1. Here, we show that SERK1 (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1) and SERK2 LRR-RLKs act redundantly as coregulatory and physical partners of EMS1. The SERK1/2 genes function in the same genetic pathway as EMS1 in anther development. Bimolecular fluorescence complementation, Förster resonance energy transfer, and coimmunoprecipitation approaches revealed that SERK1 interacted biochemically with EMS1. Transphosphorylation of EMS1 by SERK1 enhances EMS1 kinase activity. Among 12 in vitro autophosphorylation and transphosphorylation sites identified by tandem mass spectrometry, seven of them were found to be critical for EMS1 autophosphorylation activity. Furthermore, complementation test results suggest that phosphorylation of EMS1 is required for its function in anther development. Collectively, these data provide genetic and biochemical evidence of the interaction and phosphorylation between SERK1/2 and EMS1 in anther development.

          Related collections

          Author and article information

          Journal
          Plant Physiol.
          Plant physiology
          American Society of Plant Biologists (ASPB)
          1532-2548
          0032-0889
          Jan 2017
          : 173
          : 1
          Affiliations
          [1 ] Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and.
          [2 ] Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.).
          [3 ] Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and dzhao@uwm.edu.
          [4 ] Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.) dzhao@uwm.edu.
          Article
          pp.16.01219
          10.1104/pp.16.01219
          5210720
          27920157
          6092c7dd-5857-4540-be8c-64dab68147d6
          History

          Comments

          Comment on this article