1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combination of Pioglitazone and Metformin Actions on Liver Lipid Metabolism in Obese Mice

      , , , , , , , , , ,
      Biomolecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Despite the increasing prevalence rate of nonalcoholic fatty liver disease (NAFLD) worldwide, efficient pharmacotherapeutic regimens against NAFLD still need to be explored. Previous studies found that pioglitazone and metformin therapy could partly ameliorate NAFLD, but their combination therapy effects have not been researched. In the present study, we assessed the protective effects of metformin and pioglitazone combination therapy on liver lipid metabolism in high-fat diet (HFD)-fed mice and investigated the molecular mechanism. Methods: Male C57BL/6 mice were divided into five groups: normal control; HFD control; metformin monotherapy; pioglitazone monotherapy and combined therapy. After 8 weeks of pharmacological intervention, glucose and lipid metabolism characteristics, hepatic histology, lipidomics profiling and RNA-seq analysis were performed. Results: The combination of pioglitazone and metformin significantly ameliorated HFD-induced metabolic disturbance and the hepatic oil red O area. A lipidomics analysis showed that combined therapy could significantly reduce the high levels of free fatty acids (FFA), diacylglycerol and triglycerides, while a set of glycerophospholipids and sphingolipids were increased in the combined therapy group. Consistently, an RNA-seq analysis also showed a remarkable reduction in genes associated with FFA uptake and de novo lipogenesis, including Cd36, Fads1, Fads2, Fasn, Scd1, Elovl5 and Pklr in the combined therapy group. Conclusions: Pioglitazone and metformin might have a synergistic protective effect on NAFLD by improving hepatic lipid profiles in HFD-induced mice. Further studies are needed to verify the clinical effects.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.

          Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. We estimated the global prevalence, incidence, progression, and outcomes of NAFLD and nonalcoholic steatohepatitis (NASH). PubMed/MEDLINE were searched from 1989 to 2015 for terms involving epidemiology and progression of NAFLD. Exclusions included selected groups (studies that exclusively enrolled morbidly obese or diabetics or pediatric) and no data on alcohol consumption or other liver diseases. Incidence of hepatocellular carcinoma (HCC), cirrhosis, overall mortality, and liver-related mortality were determined. NASH required histological diagnosis. All studies were reviewed by three independent investigators. Analysis was stratified by region, diagnostic technique, biopsy indication, and study population. We used random-effects models to provide point estimates (95% confidence interval [CI]) of prevalence, incidence, mortality and incidence rate ratios, and metaregression with subgroup analysis to account for heterogeneity. Of 729 studies, 86 were included with a sample size of 8,515,431 from 22 countries. Global prevalence of NAFLD is 25.24% (95% CI: 22.10-28.65) with highest prevalence in the Middle East and South America and lowest in Africa. Metabolic comorbidities associated with NAFLD included obesity (51.34%; 95% CI: 41.38-61.20), type 2 diabetes (22.51%; 95% CI: 17.92-27.89), hyperlipidemia (69.16%; 95% CI: 49.91-83.46%), hypertension (39.34%; 95% CI: 33.15-45.88), and metabolic syndrome (42.54%; 95% CI: 30.06-56.05). Fibrosis progression proportion, and mean annual rate of progression in NASH were 40.76% (95% CI: 34.69-47.13) and 0.09 (95% CI: 0.06-0.12). HCC incidence among NAFLD patients was 0.44 per 1,000 person-years (range, 0.29-0.66). Liver-specific mortality and overall mortality among NAFLD and NASH were 0.77 per 1,000 (range, 0.33-1.77) and 11.77 per 1,000 person-years (range, 7.10-19.53) and 15.44 per 1,000 (range, 11.72-20.34) and 25.56 per 1,000 person-years (range, 6.29-103.80). Incidence risk ratios for liver-specific and overall mortality for NAFLD were 1.94 (range, 1.28-2.92) and 1.05 (range, 0.70-1.56).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man

                Bookmark

                Author and article information

                Contributors
                Journal
                BIOMHC
                Biomolecules
                Biomolecules
                MDPI AG
                2218-273X
                August 2023
                July 31 2023
                : 13
                : 8
                : 1199
                Article
                10.3390/biom13081199
                10452643
                37627267
                608f6291-121f-4203-90b5-7bde86b556e8
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article