4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hybrid cellulose nanocrystal/alginate/gelatin scaffold with improved mechanical properties and guided wound healing

      research-article
      , , , ,
      RSC Advances
      The Royal Society of Chemistry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nature derived biopolymers such as polysaccharides and collagen have attracted considerable attention in biomedical applications. Despite excellent biocompatibility and bioactivity, their poor mechanical properties could not meet the requirement for skin regeneration. In this study, cellulose nanocrystal (CNC) was incorporated into the calcium cross-linked sodium alginate/gelatin (SA/Ge) scaffold to reinforce its physicochemical properties. A novel sodium alginate/gelatin/cellulose nanocrystal (SA/Ge/CNC) scaffold was successfully prepared through electrostatic interaction of sodium alginate and gelatin, ionic cross-linking of calcium ions with sodium alginate, and incorporation of CNC. Afterwards, the SA/Ge and SA/Ge/CNC scaffolds were fully characterized and compared with scanning electron microscopy images, swelling behaviors, tensile strengths and contact angles. The involvement of CNC produces a hybrid SA/Ge/CNC scaffold with desired porous network, moderate swelling behavior, and superior mechanical strength (from 18 MPa to 45 MPa). Furthermore, in vitro cytotoxicity and cell growth assay using mouse embryonic fibroblast cells validated that SA/Ge/CNC scaffold was non-toxic and can prompt cell adhesion and proliferation. The in vivo skin regeneration experiments using the SA/Ge/CNC scaffold group showed an improved skin wound healing process with accelerated re-epithelialization, increased collagen deposition and faster extracellular matrix remodeling. Overall, the results suggested that the SA/Ge/CNC hybrid scaffold with enhanced mechanical performance and wound healing efficacy was a promising biomaterial for skin defect regeneration.

          Abstract

          Cellulose nanocrystal (CNC) is incorporated into Ca 2+ cross-linked alginate/gelatin (SA/Ge) scaffold to improve physical, chemical and biological aspects. The SA/Ge/CNC scaffold with enhanced wound healing efficacy is a promising biomaterial for skin defect regeneration.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Alginate: properties and biomedical applications.

          Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites.

            In the present work, nanowhiskers and microfibrillated cellulose (MFC) both extracted from sisal were used to reinforce polycaprolactone (PCL). We report the influence of the nanoparticle's nature on the mechanical and thermal properties of the ensuing nanocomposites. The surface of both the nanoparticles was chemically modified to improve their compatibilization with the polymeric matrix. N-Octadecyl isocyanate (C18H37NCO) was used as the grafting agent. PCL nanocomposite films reinforced with sisal whiskers or MFC (raw or chemically modified) were prepared by film casting. The thermal behavior (Tg, Tm, Tc, and degree of crystallinity) and the mechanical properties of the nanocomposites in both the linear and the nonlinear range were determined using differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and tensile tests, respectively. Significant differences were reported according to the nature of the nanoparticle and amount of nanofillers used as reinforcement. It was also proved that the chemical treatment clearly improves the ultimate properties of the nanocomposites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alginate composites for bone tissue engineering: a review.

              Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering.
                Bookmark

                Author and article information

                Journal
                RSC Adv
                RSC Adv
                RA
                RSCACL
                RSC Advances
                The Royal Society of Chemistry
                2046-2069
                25 July 2019
                23 July 2019
                25 July 2019
                : 9
                : 40
                : 22966-22979
                Affiliations
                [a] State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China liaojinfeng.762@ 123456163.com
                Author information
                https://orcid.org/0000-0001-8101-4030
                Article
                c9ra04026a
                10.1039/c9ra04026a
                9087972
                35548324
                60835252-8e89-4ae3-9eeb-b4406a347dea
                This journal is © The Royal Society of Chemistry
                History
                : 28 May 2019
                : 15 July 2019
                Page count
                Pages: 14
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: 31600778
                Categories
                Chemistry
                Custom metadata
                Paginated Article

                Comments

                Comment on this article