1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shoot Induction, Multiplication, Rooting and Acclimatization of Black Turmeric (Curcuma caesia Roxb.): An Important and Endangered Curcuma Species

      , , ,
      Horticulturae
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Curcuma caesia Roxb., commonly known as Kali Haldi or black turmeric, is one of the important species in the genus Curcuma. This species has been classified as one of the endangered Curcuma species due to the drastic decrement of this plant in its natural habitat. C. caesia has been overharvested for various purposes, including bioactive compound extraction to fulfill the pharmaceutical industry demand. Hence, this study was conducted to establish a protocol for the propagation of C. caesia via plant tissue culture techniques. In the shoot induction stage, three basal medium formulations, including Murashige and Skoog (MS medium), the combination of Murashige and Skoog macronutrients and B5 micronutrients (MSB5 medium) and woody plant medium (WPM medium) supplemented with 15 μM of 6-benzylaminopurine (BAP), were used. The results found that the MSB5 medium was the most suitable basal medium formulation for shoot induction of C. caesia. In the subsequent experiment, different types of cytokinin, including BAP, kinetin and 2-iP at concentrations of 5, 10, 15 and 20 μM, were fortified in the MSB5 medium for shoot multiplication. The shoot multiplication was further enhanced by supplementing the MSB5 medium with indole-3-butyric acid (IBA) or 1-napthaleneacetic acid (NAA) at the concentrations of 2, 4, 6 and 8 μM. The results showed that a combination of 15 μM of BAP and 6 μM of IBA significantly increased the shoot multiplication with 100% shoot induction, 3.53 shoots/explant, 10.81 cm of shoot length, 9.57 leaves, 0.486 g of leaves fresh weight and 0.039 g of leaves dry weight. After the multiplication, the rooting stage was carried out by altering the basal medium strength into half and full strength and supplementing with 2.5, 5, 7.5 and 10 μM of indole-3-acetic acid (IAA). The full strength of MSB5 medium supplemented with 5 μM of IAA exhibited the highest number of roots and length of roots, with 6.13 roots and 5.37 cm, respectively. After the rooting stage, the plantlets were successfully acclimatized in the potting medium with the combination of cocopeat and peatmoss, and the ratio of 1:1 was found to produce the highest survival rate with 77.78%. In conclusion, the protocol established in this study could be useful for large-scale raw material production, either for conservation or bioactive compound extraction.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nutrient requirements of suspension cultures of soybean root cells.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plant tissue culture as a perpetual source for production of industrially important bioactive compounds

              Highlights • Secondary metabolites are used in pharmaceutical industries, cosmetics, dietary supplements, fragrances, flavors, dyes, etc. • Metabolic engineering is an important biological tool to produce commercially importance metabolites. • The biosynthetic pathways for production of secondary metabolites in plants are derived from the shikimate, terpenoid, and polyketide pathways. • A huge number of medicinal plants and their metabolites have been produced by in vitro techniques.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Horticulturae
                Horticulturae
                MDPI AG
                2311-7524
                August 2022
                August 17 2022
                : 8
                : 8
                : 740
                Article
                10.3390/horticulturae8080740
                60801e0a-cee1-408a-9b43-0d2ed2b405d8
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article