38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A post-publication analysis of the idealized upper reference value of 2.5 mIU/L for TSH: Time to support the thyroid axis with magnesium and iron especially in the setting of reproduction medicine

      discussion
      * ,
      BBA Clinical
      Elsevier

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Laboratory medicine approaches the evaluation of thyroid function mostly through the single determination of the blood level of thyroid stimulating hormone (TSH). Some authors have suggested an upper reference value for TSH of 2.5 mIU/L. This suggestion has not been confirmed by recent clinical studies. These studies have delivered a clinically valid reference range going from 0.3 to 3.5 mIU/L. These values are valid for both for the general population as well as in the setting of fertility and pregnancy.

          Current biochemical evidence about the elements required to maintain thyroid function shows that these not only include dietary iodine but also magnesium, iron, selenium and coenzyme Q10. Iron is important for the synthesis of thyroid peroxidase; magnesium-ATP contributes to the active process of iodine uptake; iodine has to be sufficiently present in the diet; selenium acts through selenoproteins to protect the thyroid cell during hormone synthesis and in deiodination of thyroxine; coenzyme Q10 influences thyroid vascularity. As a consequence, good clinical practice requires additional biochemical information on the blood levels of magnesium, selenium, coenzyme Q10 as well as iron status.

          Since these elements are also important for the maintenance of reproductive function, we postulate that they constitute the connecting link between both endocrine systems.

          Graphical abstract

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antenatal thyroid screening and childhood cognitive function.

            Children born to women with low thyroid hormone levels have been reported to have decreased cognitive function. We conducted a randomized trial in which pregnant women at a gestation of 15 weeks 6 days or less provided blood samples for measurement of thyrotropin and free thyroxine (T(4)). Women were assigned to a screening group (in which measurements were obtained immediately) or a control group (in which serum was stored and measurements were obtained shortly after delivery). Thyrotropin levels above the 97.5th percentile, free T(4) levels below the 2.5th percentile, or both were considered a positive screening result. Women with positive findings in the screening group were assigned to 150 μg of levothyroxine per day. The primary outcome was IQ at 3 years of age in children of women with positive results, as measured by psychologists who were unaware of the group assignments. Of 21,846 women who provided blood samples (at a median gestational age of 12 weeks 3 days), 390 women in the screening group and 404 in the control group tested positive. The median gestational age at the start of levothyroxine treatment was 13 weeks 3 days; treatment was adjusted as needed to achieve a target thyrotropin level of 0.1 to 1.0 mIU per liter. Among the children of women with positive results, the mean IQ scores were 99.2 and 100.0 in the screening and control groups, respectively (difference, 0.8; 95% confidence interval [CI], -1.1 to 2.6; P=0.40 by intention-to-treat analysis); the proportions of children with an IQ of less than 85 were 12.1% in the screening group and 14.1% in the control group (difference, 2.1 percentage points; 95% CI, -2.6 to 6.7; P=0.39). An on-treatment analysis showed similar results. Antenatal screening (at a median gestational age of 12 weeks 3 days) and maternal treatment for hypothyroidism did not result in improved cognitive function in children at 3 years of age. (Funded by the Wellcome Trust UK and Compagnia di San Paulo, Turin; Current Controlled Trials number, ISRCTN46178175.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society Clinical Practice Guideline.

              The objective is to provide clinical guidelines for the management of thyroid problems present during pregnancy and in the postpartum. The Chair was selected by the Clinical Guidelines Subcommittee (CGS) of The Endocrine Society. The Chair requested participation by the Latin American Thyroid Society, the Asia and Oceania Thyroid Society, the American Thyroid Association, the European Thyroid Association, and the American Association of Clinical Endocrinologists, and each organization appointed a member to the task force. Two members of The Endocrine Society were also asked to participate. The group worked on the guidelines for 2 yr and held two meetings. There was no corporate funding, and no members received remuneration. Applicable published and peer-reviewed literature of the last two decades was reviewed, with a concentration on original investigations. The grading of evidence was done using the United States Preventive Services Task Force system and, where possible, the GRADE system. Consensus was achieved through conference calls, two group meetings, and exchange of many drafts by E-mail. The manuscript was reviewed concurrently by the Society's CGS, Clinical Affairs Committee, members of The Endocrine Society, and members of each of the collaborating societies. Many valuable suggestions were received and incorporated into the final document. Each of the societies endorsed the guidelines. Management of thyroid diseases during pregnancy requires special considerations because pregnancy induces major changes in thyroid function, and maternal thyroid disease can have adverse effects on the pregnancy and the fetus. Care requires coordination among several healthcare professionals. Avoiding maternal (and fetal) hypothyroidism is of major importance because of potential damage to fetal neural development, an increased incidence of miscarriage, and preterm delivery. Maternal hyperthyroidism and its treatment may be accompanied by coincident problems in fetal thyroid function. Autoimmune thyroid disease is associated with both increased rates of miscarriage, for which the appropriate medical response is uncertain at this time, and postpartum thyroiditis. Fine-needle aspiration cytology should be performed for dominant thyroid nodules discovered in pregnancy. Radioactive isotopes must be avoided during pregnancy and lactation. Universal screening of pregnant women for thyroid disease is not yet supported by adequate studies, but case finding targeted to specific groups of patients who are at increased risk is strongly supported.
                Bookmark

                Author and article information

                Contributors
                Journal
                BBA Clin
                BBA Clin
                BBA Clinical
                Elsevier
                2214-6474
                19 March 2017
                June 2017
                19 March 2017
                : 7
                : 115-119
                Affiliations
                WOMED, Karl-Kapferer-Strasse 5, 6020 Innsbruck, Austria
                Author notes
                [* ]Corresponding author. r.moncayo@ 123456chello.at
                Article
                S2214-6474(16)30071-X
                10.1016/j.bbacli.2017.03.003
                5385584
                28409122
                607f3bb5-c949-4b09-a635-60a56362af2e
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 18 December 2016
                : 5 March 2017
                : 17 March 2017
                Categories
                Commentary

                Comments

                Comment on this article