22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Crab Is Not a Fish: Unique Aspects of the Crustacean Endocrine System and Considerations for Endocrine Toxicology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crustaceans—and arthropods in general—exhibit many unique aspects to their physiology. These include the requirement to moult (ecdysis) in order to grow and reproduce, the ability to change color, and multiple strategies for sexual differentiation. Accordingly, the endocrine regulation of these processes involves hormones, receptors, and enzymes that differ from those utilized by vertebrates and other non-arthropod invertebrates. As a result, environmental chemicals known to disrupt endocrine processes in vertebrates are often not endocrine disruptors in crustaceans; while, chemicals that disrupt endocrine processes in crustaceans are often not endocrine disruptors in vertebrates. In this review, we present an overview of the evolution of the endocrine system of crustaceans, highlight endocrine endpoints known to be a target of disruption by chemicals, and identify other components of endocrine signaling that may prove to be targets of disruption. This review highlights that crustaceans need to be evaluated for endocrine disruption with consideration of their unique endocrine system and not with consideration of the endocrine system of vertebrates.

          Related collections

          Most cited references307

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging threats and persistent conservation challenges for freshwater biodiversity

          In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease.

            NMDA receptors (NMDARs) are glutamate-gated ion channels and are crucial for neuronal communication. NMDARs form tetrameric complexes that consist of several homologous subunits. The subunit composition of NMDARs is plastic, resulting in a large number of receptor subtypes. As each receptor subtype has distinct biophysical, pharmacological and signalling properties, there is great interest in determining whether individual subtypes carry out specific functions in the CNS in both normal and pathological conditions. Here, we review the effects of subunit composition on NMDAR properties, synaptic plasticity and cellular mechanisms implicated in neuropsychiatric disorders. Understanding the rules and roles of NMDAR diversity could provide new therapeutic strategies against dysfunctions of glutamatergic transmission.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamate receptor ion channels: structure, regulation, and function.

              The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                02 March 2021
                2021
                : 12
                : 587608
                Affiliations
                [1] 1Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie , Le Havre, France
                [2] 2Department of Biological Sciences, North Carolina State University , Raleigh, NC, United States
                [3] 3School of Biological Sciences, Institute of Marine Sciences, University of Portsmouth , Portsmouth, United Kingdom
                Author notes

                Edited by: Heinrich Dircksen, Stockholm University, Sweden

                Reviewed by: Taisen Iguchi, National Institute for Basic Biology, Japan; Lynn M. Riddiford, University of Washington, United States

                *Correspondence: Thomas Knigge, thomas.knigge@ 123456univ-lehavre.fr

                This article was submitted to Experimental Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2021.587608
                7961072
                33737907
                607ab39c-75a2-48db-9fab-d52f3319fca8
                Copyright © 2021 Knigge, LeBlanc and Ford

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 July 2020
                : 25 January 2021
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 308, Pages: 22, Words: 11426
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                endocrine disruption,neuroendocrine disruption,ecdysteroid signaling,color change,sexual differentiation

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content40

                Cited by6

                Most referenced authors1,893