15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere

      , ,
      Physical Chemistry Chemical Physics
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reaction of Criegee intermediates (CI) with NO and RO(2) radicals is studied for the first time by theoretical methodologies; additionally, the reaction of CI with SO(2) molecules is re-examined. The reaction of CI with NO was found to be slow, with a distinct energy barrier. Their reaction with RO(2) radicals proceeds by the formation of a pre-reactive complex followed by addition of the RO(2) radical on the CI carbon over a submerged barrier, leading to a larger peroxy radical and opening the possibility for oligomer formation in agreement with experiment. The impact of singlet biradicals on the reaction of CI with SO(2) is examined, finding a different reaction mechanism compared to earlier work. For larger CI, the reaction with SO(2) at atmospheric pressures mainly yields thermalized sulfur-bearing secondary ozonides. The fate of the CI in the atmosphere is examined in detail, based on observed concentration of a multitude of coreactants in the atmosphere, and estimated rate coefficients available from literature data. The impact of SCI on tropospheric chemistry is discussed.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions.

          We present a new hybrid meta exchange-correlation functional, called M05-2X, for thermochemistry, thermochemical kinetics, and noncovalent interactions. We also provide a full discussion of the new M05 functional, previously presented in a short communication. The M05 functional was parametrized including both metals and nonmetals, whereas M05-2X is a high-nonlocality functional with double the amount of nonlocal exchange (2X) that is parametrized only for nonmetals. In particular, M05 was parametrized against 35 data values, and M05-2X is parametrized against 34 data values. Both functionals, along with 28 other functionals, have been comparatively assessed against 234 data values:  the MGAE109/3 main-group atomization energy database, the IP13/3 ionization potential database, the EA13/3 electron affinity database, the HTBH38/4 database of barrier height for hydrogen-transfer reactions, five noncovalent databases, two databases involving metal-metal and metal-ligand bond energies, a dipole moment database, a database of four alkyl bond dissociation energies of alkanes and ethers, and three total energies of one-electron systems. We also tested the new functionals and 12 others for eight hydrogen-bonding and stacking interaction energies in nucleobase pairs, and we tested M05 and M05-2X and 19 other functionals for the geometry, dipole moment, and binding energy of HCN-BF3, which has recently been shown to be a very difficult case for density functional theory. We tested eight functionals for four more alkyl bond dissociation energies, and we tested 12 functionals for several additional bond energies with varying amounts of multireference character. On the basis of all the results for 256 data values in 18 databases in the present study, we recommend M05-2X, M05, PW6B95, PWB6K, and MPWB1K for general-purpose applications in thermochemistry, kinetics, and noncovalent interactions involving nonmetals and we recommend M05 for studies involving both metallic and nonmetallic elements. The M05 functional, essentially uniquely among the functionals with broad applicability to chemistry, also performs well not only for main-group thermochemistry and radical reaction barrier heights but also for transition-metal-transition-metal interactions. The M05-2X functional has the best performance for thermochemical kinetics, noncovalent interactions (especially weak interaction, hydrogen bonding, π···π stacking, and interactions energies of nucleobases), and alkyl bond dissociation energies and the best composite results for energetics, excluding metals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Valence bond description of antiferromagnetic coupling in transition metal dimers

                Bookmark

                Author and article information

                Journal
                PPCPFQ
                Physical Chemistry Chemical Physics
                Phys. Chem. Chem. Phys.
                Royal Society of Chemistry (RSC)
                1463-9076
                1463-9084
                2012
                2012
                : 14
                : 42
                : 14682
                Article
                10.1039/c2cp42300f
                23032271
                6049fcfc-1234-4acc-bd4c-3579cb878973
                © 2012
                History

                Comments

                Comment on this article