11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Total structure and electronic properties of the gold nanocrystal Au36(SR)24.

      Angewandte Chemie (International Ed. in English)
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A golden opportunity: the total structure of a Au(36)(SR)(24) nanocluster reveals an unexpected face-centered-cubic tetrahedral Au(28) kernel (magenta). The protecting layer exhibits an intriguing combination of binding modes, consisting of four regular arch-like staples and the unprecedented appearance of twelve bridging thiolates (yellow). This unique protecting network and superatom electronic shell structure confer extreme stability and robustness.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A DNA-based method for rationally assembling nanoparticles into macroscopic materials.

            Colloidal particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectroscopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods. A great deal of control can now be exercised over the chemical composition, size and polydispersity of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligonucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system

                Bookmark

                Author and article information

                Journal
                23154932
                10.1002/anie.201207098

                Comments

                Comment on this article