45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets

      Materials Science and Engineering: R: Reports
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references383

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

            The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

              Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single layer graphene with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on Si/SiO2 substrates showed electron mobilities as high as 4050 cm2V-1s-1 at room temperature.
                Bookmark

                Author and article information

                Journal
                Materials Science and Engineering: R: Reports
                Materials Science and Engineering: R: Reports
                Elsevier BV
                0927796X
                October 2013
                October 2013
                : 74
                : 10
                : 281-350
                Article
                10.1016/j.mser.2013.08.001
                60075d50-7720-4c2e-a9e1-bcf122f36c9a
                © 2013
                History

                Comments

                Comment on this article