59
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Resilience to Climate Change in Coastal Marine Ecosystems

      1 , 2 , 1 , 3
      Annual Review of Marine Science
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ecological resilience to climate change is a combination of resistance to increasingly frequent and severe disturbances, capacity for recovery and self-organization, and ability to adapt to new conditions. Here, we focus on three broad categories of ecological properties that underlie resilience: diversity, connectivity, and adaptive capacity. Diversity increases the variety of responses to disturbance and the likelihood that species can compensate for one another. Connectivity among species, populations, and ecosystems enhances capacity for recovery by providing sources of propagules, nutrients, and biological legacies. Adaptive capacity includes a combination of phenotypic plasticity, species range shifts, and microevolution. We discuss empirical evidence for how these ecological and evolutionary mechanisms contribute to the resilience of coastal marine ecosystems following climate change–related disturbances, and how resource managers can apply this information to sustain these systems and the ecosystem services they provide.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found

          Ecological and Evolutionary Responses to Recent Climate Change

          Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Ocean acidification: the other CO2 problem.

            Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Depletion, degradation, and recovery potential of estuaries and coastal seas.

              Estuarine and coastal transformation is as old as civilization yet has dramatically accelerated over the past 150 to 300 years. Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted >90% of formerly important species, destroyed >65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions. Twentieth-century conservation efforts achieved partial recovery of upper trophic levels but have so far failed to restore former ecosystem structure and function. Our results provide detailed historical baselines and quantitative targets for ecosystem-based management and marine conservation.
                Bookmark

                Author and article information

                Journal
                Annual Review of Marine Science
                Annu. Rev. Mar. Sci.
                Annual Reviews
                1941-1405
                1941-0611
                January 03 2013
                January 03 2013
                : 5
                : 1
                : 371-392
                Affiliations
                [1 ]Department of Ecology and Evolutionary Biology and
                [2 ]Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; email:
                [3 ]Center for Environmental Studies, Brown University, Providence, Rhode Island 02912; email:
                Article
                10.1146/annurev-marine-121211-172411
                22809195
                5ff646d6-7d10-462e-ba7a-ad03bc801065
                © 2013
                History

                Earth & Environmental sciences,Environmental economics & Politics,Environmental change,Environmental studies,Environmental management, Policy & Planning,General environmental science

                Comments

                Comment on this article