0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      COVID-19 and Tuberculosis: Mathematical Modeling of Infection Spread Taking into Account Reduced Screening

      , , , , ,
      Diagnostics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 pandemic resulted in the cessation of many tuberculosis (TB) support programs and reduced screening coverage for TB worldwide. We propose a model that demonstrates, among other things, how undetected cases of TB affect the number of future M. tuberculosis (M. tb) infections. The analysis of official statistics on the incidence of TB, preventive examination coverage of the population, and the number of patients with bacterial excretion of M. tb in the Russian Federation from 2008 to 2021 is carried out. The desired model can be obtained due to the fluctuation of these indicators in 2020, when the COVID-19 pandemic caused a dramatic reduction in TB interventions. Statistical analysis is carried out using R v.4.2.1. The resulting model describes the dependence of the detected incidence and prevalence of TB with bacterial excretion in the current year on the prevalence of TB with bacterial excretion in the previous year and on the coverage of preventive examinations in the current and previous years. The adjusted coefficient of model determination (adjusted R-squared) is 0.9969, indicating that the model contains almost no random component. It clearly shows that TB cases missed due to low screening coverage and left uncontrolled will lead to a significant increase in the number of new infections in the future. We may conclude that the obtained results clearly demonstrate the need for mass screening of the population in the context of the spread of TB infection, which makes it possible to timely identify patients with TB with bacterial excretion.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          An analysis of variance test for normality (complete samples)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study

            Summary Background COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. Methods Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. Findings In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. Interpretation Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. Funding Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

              Machine learning methods offer great promise for fast and accurate detection and prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest radiographs (CXR) and chest computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we consider all published papers and preprints, for the period from 1 January 2020 to 3 October 2020, which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. All manuscripts uploaded to bioRxiv, medRxiv and arXiv along with all entries in EMBASE and MEDLINE in this timeframe are considered. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 62 studies were included in this systematic review. Our review finds that none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases. This is a major weakness, given the urgency with which validated COVID-19 models are needed. To address this, we give many recommendations which, if followed, will solve these issues and lead to higher-quality model development and well-documented manuscripts.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                April 2024
                March 26 2024
                : 14
                : 7
                : 698
                Article
                10.3390/diagnostics14070698
                5fe22d14-e91a-4646-8a4a-444739e24bb6
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article